
File: F:\Docs\Software\SISMeasSys\memo20000901.doc Page 1

To: K. Crady G. Ediss
R. Groves A. R. Kerr
G. Lauria S. -K. Pan

cc: J. Webber

From: J. Effland

Date: 1 September 2000

Subject: Software Design for Parameter Stepping

Summary

SIS mixer performance is dependent on a large number of parameters, such as bias voltages, LO power levels and
frequencies, magnet currents, etc. The measurement software must manage all of these parameters while providing
the flexibility to allow any number of parameters to be stepped in any order, with start, stop, and step values easily
defined and changed by the user.

The software described below provides this flexibility by using generic arrays of objects, where each object
represents a particular instrument whose setting is defined by a parameter value. All the objects have common
“set” and “read” functions, so the software can control all the instruments without knowing which instrument is
being managed. Only the instrument driver, encapsulated in the instrument object, is unique to a particular
instrument.

This memo describes how all these parameters are presented to the user and also presents the design of the
parameter management classes.

This approach provides operational flexibility at the expense of software complexity and hence warrants this detailed
software design. However, it is hoped that this design will produce software that is easier to maintain than simply
writing more code each time a different sweep configuration is desired.

Status

Coding of the main measurement dialog box is about 90% complete, with just a few bugs remaining to be corrected
in the Sweep Parameters section. The classes CParamMngr and CparamStepper have been coded and tested. I am
currently coding the class CInstrCntl and hope to have this new design operational in about 3 weeks.

SIS Mixer Measurement System

Printed: 6 February 2001 Page 2

Main Measurement Dialog Box

Figure 1 shows the redesigned dialog box that is shown when the measurement program is run. The mixer of
interest is highlighted in the Mixers section, and notes about that mixer are shown in the upper Notes grid.
Measurements for that mixer and the notes for that measurement are listed in the central Measurements section.
The Sweep Parameters section at the bottom of the dialog box contains a grid that displays the parameter names
and values for the particular measurement selected. The order that the parameters are listed in the grid determines
how rapidly the parameter is changed. Those listed at the top of the grid change the most rapidly. Buttons to the
right of the Sweep Parameters grid allows changing of parameter names, values, and sweep order. The Sweep
column in this grid indicates whether the parameter is stepped or remains a constant value during the measurement.
Constant values are identified by this column and also are located in a single column of the grid.

All the data in this dialog box is contained in the SQL server database running on my computer.

SIS Mixer Measurement System

Printed: 6 February 2001 Page 3

Figure 1 : Main Measurement Interface Dialog

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 4 of 14

Swept Parameter Management

 “Parameters” are defined here as characteristics that affect mixer performance, and include:

• Mixer 1 Bias Voltage
• Mixer 2 Bias Voltage
• Mixer 3 Bias voltage
• Mixer 4 Bias Voltage
• LO Frequency
• LO Power
• IF Frequency
• Magnet Current

The software design allows additional parameters, such as IF attenuation level, to be added by making database
changes and adding an appropriate Instrument class. No changes are required to the control software.

The following sections provide design details on the parameter management classes. The class CInstrCntl controls
each instrument. The instrument to be controlled and its value are obtained from the class CParamMngr.
CParamMngr uses another class, CParamStepper, to control the individual parameter values.

1. CInstrCntl

Figure 2 shows how the class CInstrCntl performs the following functions:

1. initializes a measurement, by obtaining the parameter information from the database, and building a
generic array of parameter objects,

2. sets the relevant parameter to each instrument, and once all the parameters have been set, and
3. instructs the system to perform a measurement.

2. Initialization

First, this class queries the database to return all CW entries for this measurement, with the SweepOrder field sorted
in ascending order. Given that recordset, it then instructs the calling program to set each of the instruments to the
relevant CW value also returned from the database.

Next, it queries the database to return all sweep entries for this measurement, again with the SweepOrder field
sorted in ascending order.

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 5 of 14

National Radio Astronomy Observatory

Edit Date: 2000-11-8 09:34

CInstrCntl Activity Diagram: SIS Mixer Measurement
System

Page 1 of 1Rev: 02

Creator: jee

File: ParamMgmt1.doc

Who Date NotesRev

jee 2000-08-25 Initial00

[Last param value]

Output each
parameter to
appropriate
instrument

Store Results

Obtain parameter list and limits
from database

Step parameter
values

Measure

Table:
SweepParameters

Table:
Meas

Table:
Data

Table:
DependData

Table:
BiasPoiints

For each paramter in table, use:
CParamMngr.bInit(iType, dStart, dStop, lNumOfSteps)

Using For i = 1 to CParamMngr.GetCount

[Ready for measurement]

Using CParamMngr.bGenNext(iType, iState, vParamValue)

Using CInstCntl.bSet(iType, vParamValue)

jee 2000-09-2101 Updated with more desccriptions

Build object array with each
element representing one

parameter

Quit

Using iState

[Store Results]

jee 2000-11-0802 Added bSetInitialParams

Using
CInstrCntl.bSetInitialParam()

Build object array with each
element representing one

instrument

Figure 2: Activity Diagram for CInstrCntl

Figure 6 shows the sequence for setting and reading the instruments during a measurement. The object oInstrCntl
makes a bGenNext() call to CParamMngr, which returns with an array of objects. Note the use of common function

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 6 of 14

names, such as bSet and bRead, to facilitate using arrays of objects to make these calls generically. Some of these
functions require more than one argument, and declaring the arguments as variant data types, which can handle
either arrays or scalar values, readily accommodates that.

An example of generically setting and reading instruments follows. Error checking code is omitted for clarity:

Dim vInstruments as CInstrCntl ‘ array of instrument objects
Dim oParams as CParamMngr ‘ parameter manager object
Dim vData as variant ‘ array of variants to hold data

Do
‘ Get the next parameter value
Do

oParams.bGenNext(iInstrument, iState, vData)

If iState = gParamStateChanged then
‘ Set the instrument to this parameter value
vInstruments(iInstrument).bSet(vData

End If

Loop until iState = gParamStateTakeData

‘ Read the instruments
For i = lBound(vInstruments) to uBound(vInstruments)

vInstruments(i).bRead(vData
Next I

Loop Until iState = gParamStateFinshed

With the present state of the hardware, some of the instruments cannot read back their parameters;

LO frequency
LO power
IF Frequency

and objects representing these instruments will store their command parameters (passed with bSet) and return the
same command parameter when responding to the bRead function.

3. CSweepGrid

The class CSweepGrid manages the parameter grid on the form. The sequence diagram for creating a new record
for the sweep parameter generation is shown in Figure 3. The class CdbStoreData is used rather than general
database access class CdbMixer, because a number of specialized SQL statements are required to store the data.

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 7 of 14

jee

National Radio Astronomy Observatory

Edit Date: 2000-9-12 16:35

Adding New Parameter Sequence: SIS Mixer Measurement
System

Page 1 of 1Rev: 00

Creator: jee

File: ParamMgmt1.doc

Who Date NotesRev

2000-09-12 Initial00

fmMainIntf fmParamChange CdbStoreData

bSweepParamAddRec()

bNewParam()

ADODB.Recordset

Open()

AddNew()

Update()

bSaveParamsToDB()

CSweepGrid

bInit()

Figure 3: Adding a New Parameter

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 8 of 14

4. CParamMngr

The class CParamMngr is responsible for calculating the settings of all the instruments during a stepped measurement.
Each parameter usually represents a unique instrument (such as Mixer 1 bias supply, Mixer LO power, etc.).
CParamMngr builds a generic array of parameters (using repeated calls to bInit) to represent each instrument, and
calls to bGenNext return which instrument to set next and the value to set it. The “State” parameter in bGenNext also
identifies when all the instruments have been set so that it’s time to make a measurement.

Key methods of this class are:

bInit(iType, dStart, dStop, lNumOfSteps)

where:
iType is the type of parameter (e.g., Bias Supply 1, LO power)
dStart – start value for the parameter
dStop – stop value for the parameter
lNumOfSteps – total steps parameter should make

bGenNext(iType, iState, vValue)

where:
iType – identifies the parameter,
iState - provides the state of this parameter (see below)
vValue – the new value(s) for the parameter.

The return value iState contains one of the following constants:

gParamStateSame – the parameter remains the same as the last call. This means the instrument is
already set to this value.

gParamStateChanged - the parameter value has changed from the last call
gParamStateFinshed - the algorithm has stepped through all the states, so this signals completion of the

stepping mode.
gParamStateTakeData - All the parameters for this step have been set, so it’s time to take data.

The activities in bGenNext are illustrated in Figure 4. The method bGenNext uses an array of CParamStepper objects
to manage incrementing values and determining when the “Terminal Count” has been set for each object. When
“Terminal Count” is set for a CParamStepper object, then a lower priority parameter is sequenced.

The following code snippet from

 \\eagle\cv-cdl-sis\MeasSys\Software\BiasMeasV2.0\ParamStepper.xls

is an example of using the bGenNext function to generate a table of values such as shown in Table 1. The code is
shown below:

 Dim oParams As CParamMngr
 Dim lCtr As Long
 Dim vParamValue As Variant
 Dim iType As Integer

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 9 of 14

 Dim iState As Integer

 Set oParams = New CParamMngr

 If Not oParams.bInit(1, 0, 5, 10) Then
 ' Error during init
 Call MsgBox(oParams.sGetError)
 End If

 If Not oParams.bInit(2, 10, 20, 2) Then
 ' Error during init
 Call MsgBox(oParams.sGetError)
 End If

 If Not oParams.bInit(3, 1, 2, 1) Then
 ' Error during init
 Call MsgBox(oParams.sGetError)
 End If

 lCtr = 1
 Do
 If Not oParams.bGenNext(iType, iState, vParamValue) Then
 Call MsgBox(oParams.sGetError)
 End If

 If iState = gParamStateTakeData Then
 ' move to the next row after each "TakeData" command
 lCtr = lCtr + 1
 Else
 ActiveSheet.Cells(lCtr, iType).Select
 ' write the parameter value to the first column of this row,
 ' and the state to the second column
 ActiveSheet.Cells(lCtr, iType).Value = vParamValue
 ActiveSheet.Cells(lCtr, iType + oParams.iGetCount).Value = iState
 End If
 Loop Until iState = gParamStateFinshed

 Set oParams = Nothing

Table 1 : Sample Parameter Value Stepping Using CParamMngr.bGenNext

Values States
1 2 3 1 2 3
0 10 1 1 1 1

0.5 10 1 1 0 0
1 10 1 1 0 0

1.5 10 1 1 0 0
2 10 1 1 0 0

2.5 10 1 1 0 0
3 10 1 1 0 0

3.5 10 1 1 0 0
4 10 1 1 0 0

4.5 10 1 1 0 0
5 10 1 1 0 0
0 15 1 1 1 0

0.5 15 1 1 0 0
1 15 1 1 0 0

1.5 15 1 1 0 0

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 10 of 14

2 15 1 1 0 0
2.5 15 1 1 0 0

3 15 1 1 0 0
3.5 15 1 1 0 0

4 15 1 1 0 0
4.5 15 1 1 0 0

5 15 1 1 0 0
0 20 1 1 1 0

0.5 20 1 1 0 0
1 20 1 1 0 0

1.5 20 1 1 0 0
2 20 1 1 0 0

2.5 20 1 1 0 0
3 20 1 1 0 0

3.5 20 1 1 0 0
4 20 1 1 0 0

4.5 20 1 1 0 0
5 20 1 1 0 0
0 10 2 1 1 1

0.5 10 2 1 0 0
1 10 2 1 0 0

5. CParamStepper

This class is responsible for calculating the next value for individual parameters. It also determines when the
“Terminal Count” has been reached, which means that the particular parameter has counted up to its maximum
value. CparamStepper manages individual parameters while CParamMngr manages the set of all relevant
parameters. That is, CParamMngr manages an array of CParamStepper objects.

Parameters with constant values are processed like normal parameters, but they are dectected after the step
counter is incremented, and the function returns with the state set to gparamStateSame, since the value was set
when each parameter was set initially (i.e., when the step counter was less than the number of parameters.)

Error! Objects cannot be created from editing field codes.

Figure 4: Activity Diagram for Parameter Stepping (bGenNext)

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 11 of 14

National Radio Astronomy Observatory

Edit Date: 2000-9-21 13:45

Activity Diagram for Noise Measurement: SIS Mixer
Measurement System

Page 1 of 1Rev: 00

Creator: jee

File: ParamMgmt1.doc

Who Date NotesRev

jee 2000-09-21 Initial00

Manual LoadsChopper Wheel

Return

Prompt operator
for Hot Load

Pwr Mtr
Sq Law Det

Zero Pwr Mtr

SW IF Plate to Cal
Load

Meas Offset Volts

Meas IF Noise
Temps

Set IF Freq

[Manual Loads][Chopper]

Move chopper to
Hot Load

Meas Bias

Meas Physical
Temps

Meas Noise Power

Prompt operator
for Cold Load

[Manual Loads][Chopper]

Move chopper to
Cold Load

Meas Noise Power

[not initialized]

[initialized]

Figure 6: Activity Diagram for Noise Measurement

SIS Mixer Measurement System

File: \\EAGLE\cv-cdl-sis\Docs\Software\SISMeasSys\ParamMgmt1.doc Page 12 of 14

jee 2000-08-31 Added CParamStepper01

National Radio Astronomy Observatory

Edit Date: 2000-9-20 17:10

Instrument Setup Sequence: SIS Mixer Measurement System

Page 1 of 1Rev: 03

Creator: jee

File: ParamMgmt1.doc

Who Date NotesRev

jee 2000-08-17 Initial00

fmMainIntf oParamMngr oBias
[i]

oPhys-
Temps

oMag-
Current

bSet(nVolts)

bSet(Freq,Power)

bSet()

oIFPlate
-Freq

bSet()

bInit()

oChopper

bGetRecordset

* (for each Sweep Parameter Bias record)

bReadNextParam()

bStepNextParam()FALSE

* (for all Sweep Parameter records)

bRead(nVolts, nAmps)
* (for each Sweep Parameter Bias record)

bRead(Freq, Power)

bRead()

bRead()

oHP-
34401

bRead()

oLO oNoise
Temps

oLake-
Shore

bSet()

bSet()

oHP436

bSet()

bRead(PHot, PCold, SDevHot, SDevCold)
[UseChopper]
bRead()

oSqrLaw

[UsePwrMtr]
bRead()

bSet()

bRead()

bRead()

odbMixer
oParam-
StepperoInstrCntl

jee 2000-09-20 Added fmMainIntf02

bInit()

bReturnRecordsToArray()

bSetInitialParams()

bGetNextValue()

jee 2000-11-07 Updated CInstrCntl03

Figure 6: Sweep Parameters Sequence Diagram

