Calibration of the ACA System

Tetsuo Hasegawa
(NAOJ)
Science Requirement 1

- Precise imaging of **extended** objects
 - The ALMA with the ACA System should **routinely** achieve in millimeter wave

 Image fidelity >20 (median)
 (image portion brighter than 1% of peak)

- Similar level of fidelity for submillimeter images taken in favorable conditions
What limits the image fidelity?

- Single-dish data
 - **Pointing** error
 - **Amplitude** error

- ACA interferometry
 - **Phase** error
 - **Pointing** error
Single-dish calibration

• Single-dish mapping
 – **Pointing** error
 • Dynamic (anomalous) refraction
 Can we use N-S and E-W differential of WVR data?
 – **Amplitude** error
 • Systematic effects (e.g., scanning effect)
 Frequent calibration with the vanes (~once in 100sec)?
ACA interferometer calibration

- ACA interferometry
 - Phase error
 - Atmospheric phase error often too small to correct with WVR data (except for the longest baseline)
 - ACA too small to do “Fast switch”

<table>
<thead>
<tr>
<th></th>
<th>10m</th>
<th>20m</th>
<th>30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% of time</td>
<td>10.2</td>
<td>15.4</td>
<td>19.6 microns</td>
</tr>
<tr>
<td>50%</td>
<td>23.7</td>
<td>36.4</td>
<td>46.7 microns</td>
</tr>
</tbody>
</table>

(Holdaway, ALMA Memo in preparation)
Other Aspects

- The same approach may apply for:
 - Primary beam
 - Baseline
 - Bandpass
 - Sideband gain ratio
 - Flux
 - ...

Possible role of ACA in Calibration

• Maintaining Flux scale data of calibrators
 – Is this needed?
 – Is this possible in a reasonable time?

• Establish a calibration scale for 64-element + ACA + single-dish
 – ACA data can be a cornerstone to tie the datasets in a uniform amplitude scale
Galactic Center

350 micron, 20″ beam (Herz on CSO)

Sgr B2

350 micron, 20″ beam (Herz on CSO)

Fig. 3.—350 μm polarization results for the circumnuclear disk (CND) and M = 0.02–0.07, shown together with 1300 μm dust emission (solid contours; Mezger et al. 1989), and nonthermal radio source Sgr A East (shaded area, corresponding to the second lowest flux contour from the 6 cm map of Elsner et al. 1983). As in Fig. 2, the orientation of each bar indicates the inferred magnetic field direction, that is orthogonal to the measured polarization, and the length of each bar is proportional to the degree of polarization. The open circle at (Δα, Δδ) = (+1.5, +1) indicates a point where we set an upper limit of 0.6% on the degree of polarization. Filled (gray) circles show the positions of the four compact H ii regions in M = 0.02–0.07 (positions were obtained from Yusuf-Zadeh & Mehringer 1995). The angular resolution of the 1300 μm map is 11″. We note that the superposition of the 6 cm and 1300 μm maps shown here is identical to that of Fig. 3b in Mezger et al. (1989). The coordinate offsets are with respect to Sgr A*, and a dashed line drawn through the position of Sgr A* indicates the orientation of the Galactic plane.

Fig. 7.—Polarization of Sgr B2 at 350 μm, measured with Hertz. The vectors show the orientation of the maximum electric field. If we assume polarization by emission, the implied magnetic field is perpendicular to the vectors. The vector length is proportional to the polarization. All of the vectors shown were detected with greater than 3 σ significance. The contours show the distribution of total flux measured simultaneously with Hertz. The contour levels are 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 times the peak flux of 3960 Jy in a 20″ beam at Sgr B2 Main (Goldsmith et al. 1990). The second peak approximately 50″ to the north of Main is Sgr B2 North.
Polarization

• How can we take reliable single-dish continuum polarization data for large sources?

 Current plan
 – OTF mapping with two fixed orthogonal linear feeds
 – Calibrate with vanes
 atmosphere, receiver gain
 – Calibrate on nearby (hopefully unpolarized) sources
 beam (antenna and receiver)

 – **Susceptible to systematic effects and sky/gain variation**
Polarization

• Mapping with **polarization rotator** needed?
 (for 12-m antennas in the ACA system only)

Option A
- OTF mapping with several fixed positions of the polarization rotator

Option B
- Point-by-point mapping with fast stepping of the polarization rotator
WVR and the ACA System

Tetsuo Hasegawa
(NAOJ)
What limits the image fidelity?

- **Single-dish data**
 - **Pointing** error
 - **Amplitude** error

- **ACA interferometry**
 - **Phase** error
 - **Pointing** error
Phase errors in ACA

• Instrumental (electronics + structure)
 – 3 micron systematic*
 – 18 micron random

• Atmospheric

<table>
<thead>
<tr>
<th></th>
<th>10m</th>
<th>20m</th>
<th>30m</th>
</tr>
</thead>
<tbody>
<tr>
<td>20%</td>
<td>10.2</td>
<td>15.4</td>
<td>19.6</td>
</tr>
<tr>
<td>50%</td>
<td>23.7</td>
<td>36.4</td>
<td>46.7</td>
</tr>
<tr>
<td>70%</td>
<td>43.7</td>
<td>66.7</td>
<td>85.3</td>
</tr>
</tbody>
</table>

Phase error corresponding to 0.6” pointing error of the 12-m dish = 35 microns

The rms pathlength in microns from the site testing data 1995-2001 (Holdaway, ALMA Memo in prep.)

Key baselines for ACA
WVR use in ACA

- No WVRs on the 7-m dishes
- **Use WVRs on the four 12-m dishes**
 - Measure the phase gradient over the ACA (~50 m scale)
 - Partly correct ACA phase fluctuation
 - Partly correct dynamic (anomalous) refraction

Study of the atmospheric phase structure function in 10 - 50 m scale is still important