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Gravitational Waves
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Gravitational waves are . . .

• freely propagating ripples in the structure of spacetime.

• a prediction of General Relativity.

• generated by (almost) any moving mass/energy distribution.

• very weak (unless the source is very massive).

• as yet undetected! Detection would provide another
confirmation of GR (fundamental physics), as well as
information about the sources (astrophysics).



Indirect GW Evidence
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4 Weisberg & Taylor

Figure 1. Orbital decay of PSR B1913+16. The data points indicate
the observed change in the epoch of periastron with date while the
parabola illustrates the theoretically expected change in epoch for a
system emitting gravitational radiation, according to general relativity.

Orbital decay of PSR B1913+16
exactly matches expected GW
emission.

Very strong evidence for GW
existence, but not a direct de-
tection.

Direct detection still not suc-
cessful, although many are try-
ing. . .



GW Detectors
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• LIGO = Laser Interferometer Gravitational Wave Observatory

• νGW ∼ kHz
• Main targets are galactic sources (WD, NS, BH binaries)
• Currently operating, major upgrade planned.

• LISA = Laser Interferometer Space Antenna

• νGW ∼ mHz
• Both galactic and extragalactic (MBH) sources.
• Still in planning stages.

• PTA = Pulsar Timing Array(s)

• νGW ∼ nHz
• Extragalactic/cosmological sources (MBH, cosmic strings)
• Several ongoing international efforts: NANOGrav (N.

America), PPTA (Parkes), EPTA (Europe).



Stochastic MBH-MBH merger background
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Following galaxy mergers . . .

At orbital freq Ω;
binary emits GW with amplitude h ∝ Ω2/3;
evolution timescale τGW ∝ Ω−8/3.
Sum over many systems results in a stochastic spectrum with
h(ν) ∝ ν−2/3. Overall amplitude less certain.



GW Spectrum
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• Units:

• Dimensionless strain tensor hµν(x, t).
• Fractional closure energy density (per log ν): ΩGW (ν),

dimensionless.
• GW spectral power: Sh(ν), units h2 Hz−1.
• Characteristic strain: hc(ν) =

√

νSh(ν), dimensionless.

• Order-of-magnitude for pulsar timing δt/T ∼ hc(T
−1).
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• Units:

• Dimensionless strain tensor hµν(x, t).
• Fractional closure energy density (per log ν): ΩGW (ν),

dimensionless.
• GW spectral power: Sh(ν), units h2 Hz−1.
• Characteristic strain: hc(ν) =

√

νSh(ν), dimensionless.

• Order-of-magnitude for pulsar timing δt/T ∼ hc(T
−1).

• For MBH-MBH stochastic GWB, hc(ν) ∝ ν−2/3.

• This means signal strength δt ∝ T 5/3.

• Expected amplitude from stochastic MBH merger background
hc(1 y−1) ∼ 10−16 − 10−15 (Jaffe & Backer 2003, Wyithe & Loeb
2003, Sesana et al. 2008).

• Other potential nHz sources are cosmic strings, single
close/eccentric MBH systems, and “the unknown.”



GW Spectrum
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Detector complementarity:
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Pulsars as GW detectors
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Pulsars as GW detectors
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Radio pulses travelling through GW to Earth acquire additional
delays.



Effect on EM waves
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• GW along an electromagnetic wave’s path alters the travel time:

∆T = −
1

2
ninj

∫ d

0

hij(x, t)dr

• ∆T varies with time, so we can potentially see its effect in
measured radio pulse times of arrival.

• This is the principle behind all modern GW detectors. In the
pulsar case, there are many GW wavelengths along the path.

• Very bright, stable pulsars (MSPs) are needed if this is to be
successful: h ∼ 10−15 ∼ 30 ns/1 year.



Pulsar Timing Array
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Pulsar Timing Array
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GW-induced timing fluctuations will be correlated between different
pulsars (Hellings & Downs, 1982; isotropic GWB):
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Effect of the timing model
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We don’t know pulsar spin period, spindown rate, etc a priori.
Fitting for these removes GW power from the signal, and
determines PTA sensitivity vs ν shape.
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PTA Sensitivity
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PTA sensitivity vs freq shape:
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Single Pulsar Limits
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Current best upper limits from timing PSR B1855+09 for 20 years
(Kaspi et al. 1994, Lommen 2002, . . . ): hc(1 y−1) < 5 × 10−15



NANOGrav
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The North American Nanohertz
Observatory for Gravitational
Waves

• Formally organized 2007

• 24 members, 14 institutions
in US and Canada

• Main purpose: Increase vis-
ibility of PTA science. (As-
tro2010, conferences, NSF
grants, . . . )

http://www.nanograv.org

Gravitational Wave Astronomy Using Pulsars:
Massive Black Hole Mergers & the Early Universe

A White Paper for the Astronomy & Astrophysics Decadal Survey

NANOGrav:

The North American Nanohertz Observatory for

Gravitational Waves

Principal Authors: P. Demorest (NRAO, 434-244-6838, pdemores@nrao.edu); J. Lazio (NRL, 202-404-

6329, Joseph.Lazio@nrl.navy.mil); A. Lommen (Franklin & Marshall, 717-291-4136, andrea.lommen@fandm.edu)

NANOGrav Members and Contributors: A. Archibald (McGill); Z. Arzoumanian (CRESST/USRA/NASA-

GSFC); D. Backer (UC Berkeley); J. Cordes (Cornell); P. Demorest (NRAO); R. Ferdman (CNRS, France);

P. Freire (NAIC); M. Gonzalez (UBC); R. Jenet (UTB/CGWA); V. Kaspi (McGill); V. Kondratiev (WVU);

J. Lazio (NRL); A. Lommen (NANOGrav Chair, Franklin & Marshall); D. Lorimer (WVU); R. Lynch (Vir-

ginia); M. McLaughlin (WVU); D. Nice (Bryn Mawr); S. Ransom (NRAO); R. Shannon (Cornell); X. Siemens

(UW Milwaukee); I. Stairs (UBC); D. Stinebring (Oberlin)

This white paper is endorsed by: ATA; LISA; NAIC; NRAO; SKA; US SKA; D. Reitze (LSC Spokesper-

son, U Fl.); D. Shoemaker (LIGO Lab, MIT); S. Whitcomb (LIGO Lab, Caltech); R. Weiss (LIGO Lab,

MIT)

astro-ph/0902.2968

http://www.nanograv.org
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Telescopes
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NANOGrav Observations
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• Observe a set of 17 MSPs ∼monthly.

• Sources chosen from bright northern MSPs.
• 12 GBT, 7 Arecibo (2 overlap).
• Most are binaries: Opportunity for non-GW science as well.

• Observations started in 2004-2005 using ASP backends.

• Typical observing frequencies of 820, 1400 MHz (GBT) and
430, 1400, 2300 MHz (Arecibo).

• ∼30 minutes per frequency per source.

• Timing residuals range from ∼100 ns to 1.5 µs.

• GW results dominated by best ∼3 pulsars.



Timing Results
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Best NANOGrav timing results have RMS ∼ 100 ns:
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Timing Array Limits
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Correlation analysis of first ∼4 years of NANOGrav data:
hc(1 y−1) < 7 × 10−15
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Improvement with time
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GW Spectrum
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Improvement with time:
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Timing Array Summary
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• Current NANOGrav PTA limits are comparable to the 20-year
single pulsar limit.

• Another ∼3–5 years reaches into plausible detection territory.

• Jenet et al. (2005) estimate that we need 20–40 pulsars at
100 ns for 5 years to ensure “robust” detection.

• More good-timing pulsars are needed.

• Searching for new sources.
• Increasing BW, G/T to improve currently known pulsars.
• Reduce systematic effects, improve analysis algorithms.



Pulsar Timing “Moore’s Law”
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Improving Pulsar Timing
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Increase S/N ratio:

• δt ∼ w
SNR

= wSpsr
1

√

Bt
G

Tsys
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Reduce systematics:

• Calibration/polarimetry, RFI, ISM, . . .



GUPPI
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• ASP/GASP backends provide high-quality (8-bit, full-Stokes,
coherent dedisp) data, but only ∼64 MHz total BW.

• GUPPI = the Green Bank Ultimate Pulsar Processing
Instrument will handle up to 800 MHz.

• Coherent dedispersion design uses flexible FPGA-based
HW and GPU computing for processing.

• This is a non-trivial improvement over previous HW!



Bandwidth improvement
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PSR J1713+0747, GBT/GUPPI:

Increased BW both improves
S/N ratio as well as allows us to
catch strong “scintles” more of-
ten.



Pulse Dispersion
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PSR J1744-1134, GBT/GUPPI

Higher frequency signal arrives
earlier, due to plasma disper-
sion delay in the ISM.

Without correction (dedisper-
sion), this leads to pulse smear-
ing.



Coherent Dedispersion
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Why is coherent dedispersion necessary?
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GUPPI Status
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• “Phase I” incoherent/filterbank system currently in regular
(near-daily) usage with GBT.

• “Phase II” coherent dedispersion system HW is ordered, will be
tested this fall.



Systematic Timing Effects
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We compute arrival times (TOAs) by matching data:
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Systematic timing effects
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• Local:

• Polarimetry / calibration procedures
• Radio-frequency interference
• Instrumental effects

• ISM:

• DM variation with time (and maybe frequency)
• Scattering/scintillation
• Refraction

• Intrinsic:

• Pulse-to-pulse “jitter”
• “Timing noise”



ISM
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ISM effects
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• Come from radio wave propagation through interstellar e−

plasma; strongly λ-dependent, based on plasma dispersion
relation.

• Effects include DM(t), scattering/scintillation.
• One solution: Observe at higher RF, but psrs get weaker.
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DM Variation
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Total electron column density varies due to motions of Earth, PSR,
and ISM:

(PSR B1937+21; Ramachandran et al. 2006)
Can be measured/removed with multi-frequency timing
measurements.



Scattering/Scintillation
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Electron density variation transverse to the line-of-sight causes
constructive/destructive interference:

(Walker et al. 2008)

Can be thought of as a (time-varying) “filter” with transfer function
H(ν) or impulse response h(t). This affects profile shapes!



Pulsar Spectroscopy
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How to compute spectra from measured pulsar voltage signal x(t):

Standard pulsar spectroscopy:

• Signal is divided into many radio frequency channels.
• In each channel, on-pulse and off-pulse flux are detected,

integrated for some time and differenced (“gating”).
• Results in dynamic spectrum S(t, ν).

Limitations of this approach:

• Gate width and frequency resolution are coupled (via usual
uncertainty principle).

• Discards all pulse shape information.
• Can only directly determine |H(ν)|2.



Pulsar Spectroscopy
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In cyclic spectroscopy, we compute correlations as a function of
pulse phase:

• Signal is delayed by many different lags τ .
• Each is cross-multiplied with original signal and averaged

modulo the pulse period for some integration time (“folding”).
• Results in periodic correlation C(t, τ, φ) → S(t, ν, φ).

Advantages of this approach:

• Number of lags (hence freq resolution) not constrained by pulse
width or period.

• Makes full use of pulse shape information.
• Directly recovers H(ν) with phase!
• see reviews by Gardner (1991, 1992), Antoni (2007)



Cyclic Spectra
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PSR B1937+21 at 430 MHz, Arecibo/ASP:



Cyclic Spectra

P. Demorest NRAO CV Colloquium 2009/09/10

Same thing, zoomed in:
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ISM De-scattering
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“Snapshot” ISM impulse response h(t) determined from data:



ISM De-scattering
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Comparison of uncorrected and intrinsic pulse profiles:



Dynamic Spectra
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B1937+21, ν=430MHz, BW=4 MHz, ∆ν=0.64 kHz, T∼1 hour



Secondary Spectra
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2-D FT of dynamic spectrum, shows clear “arc” structure.



Secondary Spectra
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Contrast with methods based on traditional dynamic spectra:



Future Directions
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Future directions for ISM work:

• Get scattering-corrected TOAs, improve timing

• Investigate polarimetry aspects

• Explore more strongly scattered sources

• Work towards physical ISM images

• . . .
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