(G)ASP/WAPP Data Analysis

- NANOGrav data:
 - Taken every ~month since ~2004
 - At AO: every pulsar at two frequencies, any of 327 MHz, 430 MHz, 1400 MHz and 2300 MHz
 - At GBT: 800 MHz and 1400 MHz
 - Integration times vary from ~10-30 min per pulsar per frequency

• UBC software: ASP Fits Reader (AFR)

 Developed by Rob Ferdman, Ingrid Stairs, Marjorie Gonzalez

 Routines for calibration, timing and data handling

- AFR routines:
 - Timing:
 - **ASPFitsReader**: reads in (G)ASP FITS files and applies flux calibration, scan rejection, profile binning, polyco re-folding, polarization calibration, etc. Output file in AFR FITS format.
 - **ASPStokes**: reads in AFR FITS file and outputs ascii profiles.
 - **ASPToa**: reads in AFR FITS files and produces TOA file (also needs template).

• AFR routines (cont'd):

- Calibration:
 - **ASPCal**: reads in (G)ASP FITS calibration files and outputs calibration file with Jy/count conversion. Uses continuum files or measured Tcals for each polarization.
 - **ASPThetaBB**: calculate phase offset between the two polarizations using continuum file.

- AFR Routines (cont'd):
 - Data handling:
 - ASPAdd
 - ASPBinDown
 - ASPMatch
 - ASPRotate/ASPRotateAsc
 - ASPTemplate
 - ASPHead

• Other routines also used:

- RFI rejection: IDL code, compares each dump/channel in an observation to a standard. Outputs list of scans to be rejected that is give as input to ASPFitsReader
- Polarization calibration: more below...

• Sample run

- NANOGrav data archive at UBC: pulsar and calibration files
 - Pulsar observations: 1 min dumps, average of 16 frequency bins across bandwidth
 - Calibration observations:
 - Pulsar calibration plus flux reference source (3 files)
 - 2x1min scans, matching frequency bins
- All ASP data to date

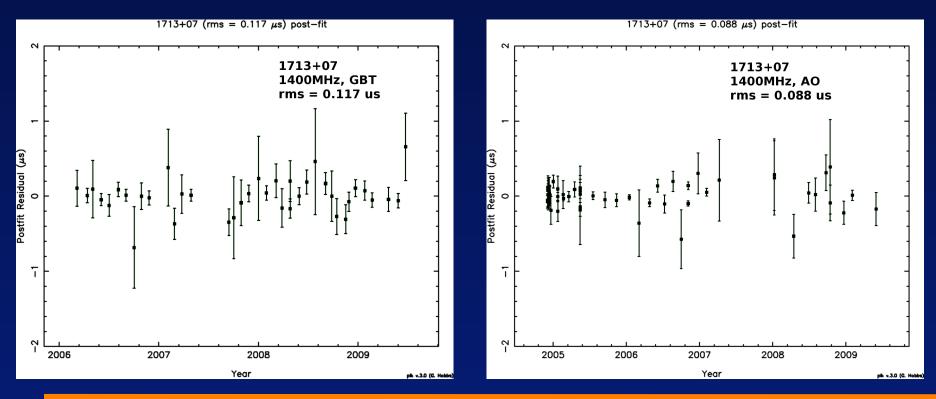
- Pipeline steps:
 - Find pulsar and calibration files for each epoch and frequency
 - Re-fold files using new par file (if desired)
 - Perform RFI rejection (if desired):
 - Compare profile for each dump/frequency with standard
 - Generate list of bad channels/dumps

• Pipeline steps (cont'd):

- Perform calibration (if desired):
 - If continuum calibration files found: use for flux calibration (ASPCal) and phase offset between polarizations (ASPThetaBB)
 - Only pulsar calibration: use calibration file and list of Tcals (ASPCal)
- Process data with given input (ASPFitsReader), in addition can:
 - Bin by specified amount in time, frequency, phase

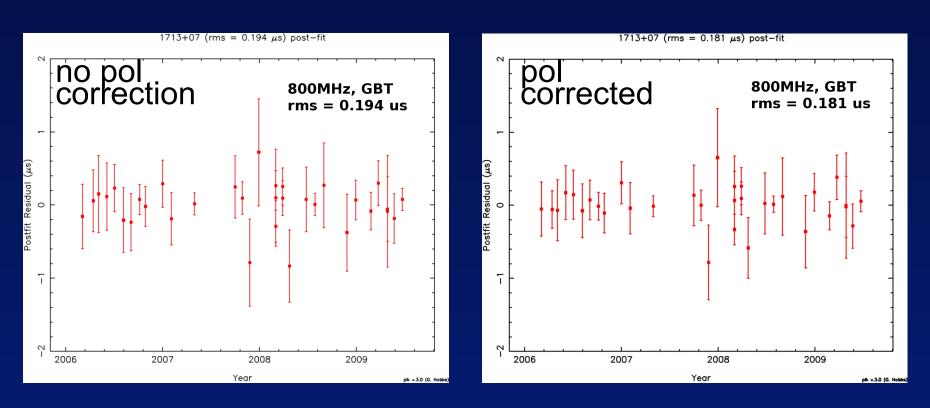
• Pipeline steps (cont'd):

- Repeat for all epochs and frequencies
- Generate profiles (ASPStokes)
- Create TOA file (ASPToa)


Running pipeline:

 Python script
 Setup appropriate directories/files

- Needs
 - Par file
 - -Tcal file
 - Standard file
 - Mueller matrix
 - Pulsar/calib files


- Creates
 - Polycos
 - Cal file
 - ThetaBB file
 - Profiles
 - -Toas

Example: J1713+07, 1400 MHz at GBT and AO

- Polarization calibration:
 - IDL code: match observed Stokes parameters to those of well-calibrated calibrated profile. Solve matrix describing the required transformation.
 - Once matrix is found, feed into ASPFitsReader to correct data taken with similar setup

• Sample results: 800 MHz, GBT

