
ALMA LO System Setup Algorithms
Stephen Scott
10 June, 2009

Revision 1.9

1 Terminology
The following acronyms and terms are used in the description of the LO system:

FSKY: Sky frequency, the desired sky frequency in the center of one baseband.
DYTO: Digitally Tuned YIG Oscillator (this is the 2nd LO); range 8-14 GHz.
FTS: Fine tuned synthesizer, part of the 1st and 2nd LO's (FTS1 & FTS2),

range varies from 20-42.5MHz in LO2 or 20-45MHz in LO1.
LO2: Second LO, used to downconvert the first IF bandpass into the 2nd IF.

Physically this is the output of a DYTO. Range 8-14GHz. There is an LO2
for each baseband. The DYTO is a harmonic of 125 MHz combined with
the FTS2 (20-42.5 MHz), added or subtracted depending on the lock
sideband selection, giving discontinuous coverage of the LO2.

CVR: Central Variable Reference, used to generate LS, located in lab.
LS: Laser synthesizer, a component of LO1, distributed from central

electronics to antennas. It is the sum of the laser synthesizer multiplier
times the CVR minus 125 MHZ

LODRIVER: The driver for the LO1, composed of the sum/ difference of LS and FTS1.
LO1: The first LO downconverts the sky frequency to the IF frequency. The first

LO is the product of the cold multiplier and the LODRIVER.
LOINT: The intermediate LO was used as an additional downcoversion step at the

ATF and is always an upper sideband conversion.
IF: Intermediate frequency, the absolute difference between the sky

frequency and the first LO (after additional subtraction of the intermediate
LO when it is used). The IF is receiver band dependent with ranges of
4-8/6-10/4-12 GHz.

DIGITIZER: The aliasing digitizer runs at 4 GHz.
IF2: The second IF band contains the signal band that is passed to the

digitizer. The aliasing digitizer runs at 4 GHz with the filtered band just
below it, so IF2 is from 4.0-BW to 4.0 GHz (usually 2-4 GHz), with the
center at 4.0 - BW/2 => 3.0 GHz.

BASEBAND: The baseband has a center frequency that is equal to the difference of the
digitizer frequency and the center of IF2 (typical baseband center 1 GHz).

6/10/2009 11:41 AM page 1 of 13

2 Considerations

Background
By convention, the LO chain algorithms in this document specify center frequencies of
passbands, such as ܨ௕௔௦௘௕௔௡ௗ.

To place a sky frequency in the center of one of the basebands the signed sum (the
signs depending on the sideband) of ܨ௟௢ଵ, ܨ௟௢ଶ, ܨ௟௢௜௡௧, ܨௗ௜௚௜௧௜௭௘௥, and ܨ௕௔௦௘௕௔௡ௗ must be
equal to the sky frequency. Only ܨ௟௢ଵ and ܨ௟௢ଶ are variable, reducing the problem to
finding the combinations of these two frequencies that yield the desired fixed target
frequency represented by the sum/difference of ܨ௦௞௬ and the fixed frequencies. Note

that placing a sky frequency in the center of the baseband may place the target
frequency at a notch in the correlator passband (such as between the tunable filters).
Proper placement of the sky frequency should take the correlator configuration into
account and would be done by higher level software the controls both the LO chain and
the correlator configuration.
SSB and DSB Use Cases
The frontend hardware bands have distinct capabilities for sidebands of the first LO:
single sideband, sideband separating, or double sideband. These three types of
frontends add complexity to the setup of the LO chain which results in two independent
use cases. The first use case is the specification of a single sky frequency for each
baseband and can be used for all front end types and is designated as the SSB use
case. When a double sideband receiver is used it is sometimes desirable to specify sky
frequencies for both the upper and lower sidebands of a baseband and this is
designated the DSB use case.

There is an additional constraint placed by the matrix switch in the IF Processor
hardware. This switch routes the USB and LSB inputs to the LO2’s to be mixed to form
the basebands. These switches routes the USB/LSB inputs to pairs of LO2’s. As a
result the pairs Baseband0/Baseband1 and Baseband2/Baseband3 must each share
the same sideband.

Frequency Errors
When more than two sky frequencies are specified the discontinuous coverage of ܨ௟௢ଶ
may not allow all sky frequencies to be set without error. This applies to both use
cases. Additionally, the DSB setup with sky frequencies specified in both sidebands of
a single baseband provides sufficient constraints such that the first LO frequency is
essentially determined with no flexibility in IF placement. In this case sky frequencies
should only be chosen in a single sideband of the remaining basebands or large errors
may result. The user can control which sky frequencies are more important in how the
errors are apportioned by using a weight that is associated with each sky frequency.

Sideband Preferences
In most cases the software can be allowed to choose the first LO sideband based on
the capabilities of the frontend. This would include cases where there are legitimate
solutions available for both sidebands. For some other SSB setups it is desirable to
specify the sideband of the sky frequency, perhaps to avoid a strong line in the
suppressed image sideband, or to avoid a problematic range of the first LO. The
software must support these different cases by allowing for a sideband preference to
be specified.

IF Frequency
The frontend may have parts of the IF band where performance is significantly better
(this is especially true for prototype frontends), requiring that the user have the ability to
specify the preferred IF frequency. A default value of the center of the IF band will
allow many users to ignore this specification. Because of the constraints present in the
DSB use case any IF frequency specifications are ignored.

Operational Constraints
There will be times when some of the hardware does not work, or does not work
correctly, particularly during commissioning. To ensure complete flexibility in these
cases specific sky frequencies must be associated with specific baseband hardware,
including skipping unused hardware basebands. In general, tuning solutions must be
computed for all lock sideband combinations of ܨ௙௧௦ଵ, ܨ௙௧௦ଶ, and ܨ௟௢ଵ (when there is a
choice) even when some of these locks have larger frequency errors. These solutions

6/10/2009 11:41 AM page 2 of 13

may be further sorted based on operational constraints, and those that are not
supported or discouraged by the current hardware configuration can be removed.

Algorithm Overview
The basic algorithm is driven by a table reflecting the System Block Diagram which
contains all of the relevant hardware parameters for all bands. The experience at the
ATF shows that there is a need to allow for customization of both the hardware
capabilities and the algorithm until the hardware and software have reached stability.
This is done using inheritance, where new behavior simply over-rides the base
implementation without changing the base implementation or the interface. Different
hardware capabilities are supported by over-riding the method(s) that return parameter
values that describe the capabilities. Specific algorithm steps can be over-ridden in the
same way.

The LO chain tuning procedure begins with an immutable core algorithm that finds as
many tuning solutions as possible for the hardware specifications, including all possible
lock sidebands of FTS1 and FTS2. The next step assigns each solution a score, using
a simple algorithm based on the sky frequency errors and distance from the preferred
IF frequency, which can be over-ridden for a given installation. This is followed by
editing, which can also be over-ridden, to remove solutions that are disallowed by
some restrictions on the current hardware configuration. Finally the best score is
selected from the remaining solutions. All solutions after editing are preserved, along
with the score, so that they can be retrieved by a client and advanced selection done
there. This procedure allows for maximum flexibility.

The behavior of the algorithm at the edge of each receiver band has been the subject
of discussion. The algorithm requires that the full baseband be contained within the
frequency span of the receiver. While it is arguable whether the baseband should be
allowed to partially extend beyond the receiver band frequency limits, it is in fact the
specified range of the LO2 and LO driver for each band that are the fundamental
restriction. These frequencies are specified in the System Block Diagram such that the
baseband must be fully contained within the receiver frequency span.

3 Algorithm Details
The algorithm differs significantly for the SSB and DSB use cases. The SSB algorithm
will produce many solutions, while a DSB setup will produce only a few. In both cases
the first step is basic parameter checking.

Parameter Checking
The first step in the algorithm is checking the input parameters for basic plausibility. If
inconsistencies are found then exceptions are thrown. If input values are omitted then
defaults will be supplied. Input sky frequencies must fall within a frontend receiver band
(actually so that the baseband will be completely inside the front end range), and all
specified sky frequencies must correspond to the same band. The Band2/Band3
overlap is resolved if necessary. If sideband preferences are input they are compared
against the physical capabilities of the frontend, otherwise they are automatically
assigned. Sideband preferences are also checked against the IF processor constraint
that the first two basebands must be from the same sideband and the last two
basebands must be from the same sideband.

6/10/2009 11:41 AM page 3 of 13

Solution Generation
The discontinuous coverage of ܨ௟௢ଶ provides constraints in the setup of the LO chain
when trying to center desired sky frequencies in the basebands. The second LO is also
used for fringe tracking and frequency offsets for sideband separation and suppression
that further reduce the range by one MHz at each end. This reduction is referred to as
the offset frequency guard. In the SSB use case, for any single baseband there are
many combinations of the two variable LO’s that will map to the desired frequency. In
this case, the FTS2 can be placed in the center of its range and ܨ௟௢ଵ chosen to give the
correct sky frequency. Two basebands provide enough constraints that it may not be
possible to center both of the sky frequencies in the baseband. The maximum sum of
absolute sky frequency errors using both FTS2 lock sidebands and taking into account
the LO offset frequency guards is arbitrarily split between the two basebands so that
the sum is 10.75 MHz, giving a weighted average of 5.4 MHz. For three basebands the
maximum sum of errors is 21.17 MHz (average 7 MHz). For four basebands the sum
of errors is 26.38 MHz (average 6.6 MHz).

For the SSB case, the solution set is composed of all of the harmonics of 125 MHz that
give ܨ௟௢ଶ that will be within its range and yield a valid IF frequency. The ܨ௟௢ଵ frequency
is uniquely determined when the LO2 harmonic is chosen. The ܨ௟௢ଶ span is the IF
bandwidth minus the baseband bandwidth (the baseband must be fully contained
within the IF) so half a baseband bandwidth (1 GHz) is lost at both ends. There are 8
LO2 harmonics per GHz, giving 48 (8x6) for an 8 GHz IF and 16 (8x2) for a 4 GHz
wide IF. These numbers vary depending on the lock sideband and will be one greater
for half the LO2 locks. The solution set is the product of the number of harmonics and
the lock combinations, of which there are 4 (FTS1xFTS2). There is a x2 multiplier for
each additional baseband (FTS2) that is used for a single sideband receiver.For a two
sideband receiver, there would seem to be another x2 from the sidebands but to use
both the LOdriver range is usually limited and the restriction of pairing basebands by
sidebands also is a limitation. The difference in specified baseband sky frequencies will
reduce the range of LO1, reducing the number of possible solutions below the
maximum. Basebands with a valid frequency but zero weight will also contribute to the
constraints on LO1 and reduce the number of solutions. The 8 GHz wide bandwidth is
always paired with a single sideband frontend and the 4 GHz with a double sideband
frontend. The maximum number of LO chain solutions for some different combinations
of basebands and frontends is shown in Table 1.

Basebands One SB (8 GHz) Two SB (4GHz)
1 192 132
2 390 260
3 755 516
4 1508 1028

Table 1: Maximum number of LO chain solutions

The main function of the core SSB algorithm is to take each of these tuning solutions
and find the ܨ௟௢ଵ and baseband ܨ௟௢ଶ values that will give the smallest weighted absolute
error, using the weightings assigned to each baseband. This error (the sum of absolute
weighted errors for each baseband) and a ‘score’ are included with the tuning solution.
The highest score is then reported as the preferred solution. It should be noted that the

6/10/2009 11:41 AM page 4 of 13

errors for each baseband are not inversely proportional to the weight as the baseband
errors are not completely independent.

The DSB algorithm finds ܨ௟௢ଵ that will give the smallest weighted sum of errors for each
of the lock sideband combinations. The sky frequency errors for a DSB baseband are a
function of the difference in frequency of the upper and lower sideband frequencies
and the LO2 coverage and cannot necessarily be reduced to zero by moving ܨ௟௢ଵ. The
number of solutions derives from lock sideband combinations and is 2 raised to the
power of the number of basebands plus one, with the additional one arising from FTS1.
SSB baseband specifications may be mixed with a DSB spec, but the frequencies
should be chosen judiciously as a single DSB specification essentially fixes ܨ௟௢ଵ.

LO1
 ௙௧௦ଵ. The highܨ ௖௩௥ times an integer multiplier, a fixed offset, andܨ ௟௢ଵ is the sum of theܨ
resolution of the CVR synthesizer gives ܨ௟௢ଵ essentially continuous coverage
throughout its range, allowing FTS1 to be arbitrarily placed in the center of its range.
Independent solutions are chosen for each sideband of the LO1 lock loop
(tunehigh=true/false) allowing hardware restrictions to be used later to edit out
undesired settings.

LO2
F୪୭ଶ, also known as Fୢ୷୲୭, is a harmonic of 125 MHz with the F୤୲ୱଶ added/subtracted.
The F୤୲ୱଶ has a nominal range of 20 to 42.5 MHz which is reduced by one MHz on each
end to allow for antenna based LO offset frequencies, yielding an overall coverage of
just over 31%. This discontinuous coverage is the constraint that does not allow all sky
frequencies to be set without error.

Score
The score for each solution in the SSB use case is currently the weighted sum of two
terms: the weighted error and the distance of the IF frequency from the requested IF
frequency. The requested IF frequency defaults to the center of the IF band when the
input IF frequency is zero. In the SSB case the sum of the absolute weighted frequency
errors is normalized by 25 MHz. The DSB use case only uses the sky frequency errors,
normalized somewhat arbitrarily to 200 MHz, and ignores the IF frequency. The current
weighting of the two terms gives a weight of 5 to the weighted frequency error and 1 to
the IF distance. Both of these terms are first normalized such that a maximum
deviation gives zero and no deviation gives unity. The final scores are scaled so that
the maximum is about 10. Scoring is isolated in a single method and should be easy to
change or over-ride. The scoring algorithm may require future modifications as more
experience is gained with ALMA.

Hardware variations
The ATF has been a good test case for variabilities in the actual hardware. There is an
additional downconversion step (the intermediate LO), and different ranges for the IF
and the LOdriver. The ATFLOsolutions class inherits from the base LOsolutions
class and over-rides the methods that return values for the parameters that are
different. This allows the base algorithms in LOsolutions to not be polluted by
conditional code to handle the case of the ATF. When the ATF goes away, the ATF
specific classes can just be deleted. It is anticipated that this pattern may occur again
in ALMA and have used the ATF as a way to test the implementation.

The ATF has another constraint that is not easily expressed in parameter values – it
wants to use only a single sign of lock for the FTS1. This is handled by over-riding the
edit method to remove these solutions. The edit method is called before final scoring is

6/10/2009 11:41 AM page 5 of 13

done, and gives the flexibility to reject solutions for arbitrary reasons. Note that the
client can also retrieve all the final solutions, including the score, if desired and apply
custom selection criteria to find a solution.

Band2/Band3 frontend overlap
There is an overlap in the frequency coverage of Band 2 and Band 3 between 84 GHz
and 90 GHz. This overlap will not be much of an issue for quite some time as Band 3 is
due very early in the schedule and Band 2 much later. Nonetheless, capability must be
provided to select the frontend when the frequency is within the overlap. This is done
by providing an input parameter that allows a choice of NoPreference as well as an
explicit selection of either band. The NoPreference option will trigger an algorithm that
currently chooses Band 3 but can be modified in the future as necessary.

4 API

Overview
Structures are defined in IDL that are used as input parameters and to define the LO
chain solutions that are returned. These IDL structures are found in ICD/Control. The
core of the computational software is in the LOsolutions class, a Java module in
ICD/SharedCode, which uses the ICD/Control IDL structures for input and output
parameters. This code will be used by both the OT and Control, giving a common basis
for the LO chain calculations. The solution set is calculated with a single method call
containing the requested sky frequencies, weights, sideband preferences and IF
frequencies for the basebands. There are two variants of this method covering the SSB
and DSB use cases. The frequency overlap between bands 2 and 3 is handled with an
additional parameter to support this selection.

There is no automatic mapping of sky frequencies to basebands, allowing full control to
the caller of the method. This will allow the case of a broken or missing baseband to be
addressed by the caller. For example, use only baseband0 and baseband2. An unused
band is specified with a sky frequency less than 1 MHz. This same convention is used
to get the default value of the IF frequency of the middle of the band. Valid solutions for
all four basebands are always returned even when they are not specified in the input.
This is accomplished by copying the solutions for the first valid baseband into the
unused or invalid basebands.

The range for the weight values is 0 to 100. While a weight of 0 will remove the
baseband from the first LO calculations, the second LO will be correctly calculated as
long as there is a valid sky frequency. This is useful for low priority “ride along”
basebands.

The result of allowing full flexibility in debugging and commissioning is that there are
parameters that will be rarely exercised in a majority of observing. These parameters
can be partially hidden from the casual user by default values in Python or OT defaults.

6/10/2009 11:41 AM page 6 of 13

IDL structures and enums

The following IDL structures are input parameters defined in ICD/CONTROL
Enum SidebandPreference {
 Lower,
 Upper,
 NoPreference
};

struct SSBbasebandSpec {
 double skyFreqHz;
 double weight; // 0 to 100
 double ifFreqHz;
 SidebandPreference sidebandPref;
};

struct BasebandSpec {
 double skyFreqHz;
 double weight;
 double ifFreqHz;
};

struct DSBbasebandSpec {
 BasebandSpec USB;
 BasebandSpec LSB;
};

typedef sequence<DSBbasebandSpec> DSBbasebandSpecSeq;
typedef sequence<SSBbasebandSpec> SSBbasebandSpecSeq;

/**
 * Only for the limited case of the Band2/Band3 overlap.
 * Automatic is almost always the correct choice.
 */
Enum Band2Band3Overlap{
 Band2,
 Band3,
 Automatic
};

6/10/2009 11:41 AM page 7 of 13

LO chain setup computation methods
The following methods are part of the Java LOsolutions class defined in
ICD/SharedCode/LOsolutions:
/**
 * Single sideband use case, returns number of solutions.
 * @param baseband Vector of single sideband baseband
 * specifications. Specifications are assigned to basebands
 * (hardware) in the order given, first element to baseband0,
 * etc. If a sky frequency is less than 1 MHz then that baseband
 * will not be used in the computations and the solution for
 * that baseband will be a copy of the first valid baseband
 * solution. If the weight is set to zero then the sky
 * frequency will not be used in the first LO calculation,
 * but the 2nd LO will be calculated correctly. The sequence
 * length must be between 1 and 4.
 * @param band2band3pref specify receiver choice when the
 * specified frequency is in the band2/band3 overlap.
 * Almost always the best choice is NoPreference.
 */
short computeSolutions(Vector<SSBbasebandSpec> baseband,
 Band2Band3Overlap band2band3pref);

/**
 * Double sideband use case, returns number of solutions.
 * The same basic parameters as computeSolutions(), except
 * that a vector of double sideband baseband specifications
 * is used. The parameters have the same use, except that
 * specifying sky frequencies for both upper and lower sideband
 * requires more care. If the same spec is entered for both
 * sidebands of a baseband then the sideband will be
 * automatically chosen.
 */
short computeSolutions(Vector<DSBbasebandSpec> baseband,
 Band2Band3Pref band2band3pref);

6/10/2009 11:41 AM page 8 of 13

Tuning parameters
The following IDL structures define the tuning parameters in ICD/CONTROL used as
method return values:
/// The tuning parameters for one second LO.
 struct LO2Parameters {
 double DYTOFrequency; // used to coarse tune the second LO
 double FTSFrequency; // used to set the FTS
 boolean tuneHigh; // True if the FTS is added to the DYTO.
};

struct TuningParameters {
 /// The receiver cartridge.
 ReceiverBandMod::ReceiverBand receiverBand;
 /// The Central Variable Reference frequency
 double CVRFrequency;
 /// LaserSynth to CVR multiplier
 short LSMultiplier;
 /// First LO Offset Generator (FTS1) Frequency
 double FLOOGFrequency;
 /// True if the FLOOG freq. is added to the 1st LO freq.
 boolean tuneHigh;
 /// The 1st LO driver is multiplied up to give the 1st LO
 /// This is a hardware characteristic and does not set hw.
 short coldMultiplier;
 /// IF processor sideband selection for basebands 0 & 1
 boolean band0band1selectUSB;
 /// IF processor sideband selection for basebands 2 & 3
 boolean band2band3selectUSB;
 /// Tuning Parameters for all four second LO's.
 AllLO2Parameters LO2;
 /// Weighted error; the weighted sum of
 /// abs(actual - requested) frequency over all basebands.
 /// This is one measure of the goodness of the tuning.
 double weightedError;
 /// Score is measure of the relative desirability of tuning
 double score;
 // Tuning solution index, starting at zero
 short index;
};

typedef sequence<TuningParameters> AllTuningParameters;

6/10/2009 11:41 AM page 9 of 13

Utility methods
The following utility methods are part of the Java LOsolutions class defined in
ICD/SharedCode/LOsolutions:
/// Get number of computed solutions
short getNumSolutions();
/// Get the index of the preferred solution
short getPreferredSolutionIndex();
/// Get the tuning parameters for a specific index
TuningParameters getTuningSolution(short index);
/// Get the preferred tuning parameters
TuningParameters getPreferredTuningSolution();
/// Get all the tuning parameters
AllTuningParameters getTuningSolutions();
/// Get hardware param table as a string (for debugging)
String getHardwareParameters()

Control Interface
The control system uses the CONTROL/ObservingModes/Array/LocalOscillator IDL
interface with the following methods implemented in Java. All the utility methods
previously mentioned are also available.
/**
 * Sets up the entire LO chain for the single sideband use case.
 * This interface wraps computeSolutions as well as sets up all
 * the hardware. See computeSolutions for docs.
 */
short setFrequency(SSBbasebandSpec[] baseband,
 Band2Band3Pref band2band3pref);
/// Setup LO chain for the DSB use case; see setFrequency().
short setFrequencyDSB(DSBbasebandSpec[] baseband,
 Band2Band3Pref band2band3pref);

6/10/2009 11:41 AM page 10 of 13

Python wraps the LocalOscillator interface and for programmatic use all parameters
are available. For interactive use the python interface is smart enough to use many
defaults and resolve ambiguities for convenience in CCL testing and debugging.
setFrequency(basebandSpecs,
 band2band3pref=Control.BandOverlap.Automatic)
 The input parameter basebandSpecs is a list of baseband specs,
each of which is a list of the parameters for a baseband spec
with appropriate defaults. A single input frequency is also
supported for convenience. ‘None’ can be used as a place holder.
Parameters that aren’t specified take on default values. To
avoid ambiguity, a DSB spec needs to be a pair of lists, even if
they only contain a single element (the frequency). The
interpretation of parameters uses these rules:
 o Each baseband is a list, but the list is not required for
 just a frequency or a frequency and a sideband preference.
 o If a baseband contains a list, it is a DSB baseband and must
 contain two list, one for each sideband. The list with the
 higher frequency will be assigned to the upper sideband.
 o A band overlap can be specified anywhere that a baseband can
 be specifieid.
Illustrative examples of usage and interpretation:
 setFrequency(x)
 SSB use case
 bb0: f=x, w=100.0, IF=0, sb=NoPreference
 setFrequency(x,Control.BandOverlap.Band2,y)
 SSB use case, band2band3pref=Band2
 bb0: f=x, w=100.0, IF=0, sb=NoPreference
 bb1: f=y, w=100.0, IF=0, sb=NoPreference
 setFrequency([x,Control.SidebandPreference.Upper,a],y)
 SSB use case
 bb0: f=x, w=a, IF=0, sb=Upper
 bb1: f=y, w=100.0, IF=0, sb=NoPreference
 setFrequency([x,a],[y,b,c])
 SSB use case
 bb0: f=x, w=a, IF=0, sb=NoPreference
 bb1: f=y, w=b, IF=c, sb=NoPreference
 setFrequency(x,y,z)
 SSB use case
 bb0: f=x, w=100.0, IF=0, sb=NoPreference
 bb1: f=y, w=100.0, IF=0, sb=NoPreference
 bb2: f=z, w=100.0, IF=0, sb=NoPreference
 setFrequency([[U],[L]])
 DSB use case
 bb0: f=U, w=100.0, IF=0, sb=Upper
 f=L, w=100.0, IF=0, sb=Lower
 setFrequency(None,None,[[U],[L,40]])
 DSB use case
 bb2: f=U, w=100.0, IF=0, sb=Upper
 f=L, w= 40.0, IF=0, sb=Lower

6/10/2009 11:41 AM page 11 of 13

5 APPENDIX I: Equati nso

Fun േ or ט are signs of USB/LSB for LO1 or FTS locks: d enta efinitions, wh
௞௬ ௟௢ ܨ ௡௧ሻ

ଶ ௧௦ଶ

am l d ere
௦ܨ ൌ ܨ ଵ േ ሺ ௜௙ ൅ ௟௢௜ܨ

௢ ൌ ௟ܰ 0 േ ௙ܨ
5

௟ܨ ௢ଶ ൈ .125
ൌ ൈ ௟ܰ௦ ௟௦ܨ12 ௖௩௥ܨ െ 0.

௢ௗ ൌ േ ௙௧௦ଵܨ
ଵ ௗ ௢௟ௗ

௟ܨ ௥௜௩௘௥ ௟௦ܨ

௢ ௥௜௩௘௥
ൌ

௟ܨ ൌ ௟௢ܨ ൈ ௖ܰ
௟௢ଶܨ ଶ

െ ௕௔௦௘௕௔௡ௗܨ
௜௙ܨ െ ௜௙ܨ
௜௙ଶܨ ൌ ௗ௜௚௜௧௜௭௘௥ܨ
௕௔௦௘௕௔௡ௗܨ ൌ ௕௪/2ܨ

Other handy equations, where േ or ט are still the signs of USB/LSB:
ௗ௜௚௜௧௜௭௘௥ܨ 4.0

ൌ

௕௪ܨ ൌ 2.0
௔௦ ௗ ௪/2 ൌ 1.0
ଶ ௚ ௕௔௦௘௕௔௡ௗܨ ൌ 4.0 െ 1.0 ൌ 3.0

௕ܨ ௘௕௔௡ ൌ ௕ܨ
௙ ௗ௜

௜ܨ ൌ ܨ ௜௧௜௭௘௥ െ

ൌ െܨ௜௙ ௟௢ଶܨ ௜௙ଶܨ
ൌ െܨ௜௙ ௟௢ଶܨ 3.0

௢ଵ ൅ ௧ሻ ܨ௦௞௬ ൌ ௟ܨ േ ሺܨ௜௙ ௟௢௜௡ܨ
േ െ ௟௢ܨ

൅ 3.0൯
௦௞௬ܨ ൌ ௟௢ଵܨ ሺܨ௟௢ଶ 3.0 ൅ ௜௡௧ሻ

ൌ ௦ܨ ௧௢ േ ௙௧௦ଶܨ െ ௟௢௜௡௧ܨ
൅ 3.0

௟௢ଵܨ ௞௬ ט ൫ ܨௗ௬
ܨ ൌ േ ௦௞௬ െ ܨ ൯ െ ܨ

௟
௟௢ଶ ൫ܨ ௟௢ଵ ௟௢௜௡௧

௟௢ௗ௥௜௩௘௥ܨ ൌ ܨ ௢ଵ/ ௖ܰ௢௟ௗ
௟௢ܨ ௩௥ ൌ ൤

ܨ ଵ

௖௢௟ௗ
ט ܨ ଵ / ௟ܰ௦

ௗ-0.125ൈ ௖ܰ௢௟ௗ േ ሺܨ௙௧௦ଵ ൈ ௖ܰ௢௟ௗሻ
௖ ܰ ௙௧௦

 ൈ ௖௢௟

ଵ ௢௟ௗ

൅ 0.125൨

௟௢ଵܨ ൌ ௖௩௥ܨ ௟ܰ௦ ൈ ܰ
௟௢ܨ ൌ ௟௢ௗ௥௜௩௘௥ܨ ൈ ௖ܰ
௜௙ܨ ൌ േሺܨ௦௞௬ െ ௟௢ଵሻܨ

6/10/2009 11:41 AM page 12 of 13

6/10/2009 11:41 AM page 13 of 13

6 APPENDIX Ii – System Parameters
The basic LO algorithm is driven by the system parameters that describe the hardware
capabilities. The parameters for ALMA are hardcoded and then potentially modified if a new
system inherits and modifies some of the parameters. The parameters can be returned as a
string with the method getHardwareParameters(). The table below is based on the System
Block Diagram, Rev ‘O’.

Band BandFreq SB IFfreq Mult LOdriver
 low high low high warm cold low high

Band1 31.3 45.0 USB 4.0 12.0 1 1 27.3 33.0
Band2 67.0 90.0 LSB 4.0 12.0 6 1 79.0 94.0
Band3 84.0 116.0 2SB 4.0 8.0 6 1 92.0 108.0
Band4 125.0 163.0 2SB 4.0 8.0 3 2 66.5 77.5
Band5 163.0 211.0 2SB 4.0 8.0 2 6 28.5 34.5
Band6 211.0 275.0 2SB 6.0 10.0 6 3 73.7 88.3
Band7 275.0 373.0 2SB 4.0 8.0 6 3 94.3 121.7
Band8 385.0 500.0 2SB 4.0 8.0 6 5 78.6 98. 4
Band9 602.0 720.0 DSB 4.0 12.0 3 9 67.8 79.1

Band10 787.0 950.0 DSB 4.0 12.0 6 9 88.8 104.2

	1 Terminology
	2 Considerations
	3 Algorithm Details
	4 API
	5 APPENDIX I: Equations
	6 APPENDIX Ii – System Parameters

