
A&A 376, 359–380 (2001)
DOI: 10.1051/0004-6361:20010923
c© ESO 2001

Astronomy
&

Astrophysics

Definition of the Flexible Image Transport System (FITS)?

R. J. Hanisch1, A. Farris1, E. W. Greisen2, W. D. Pence3, B. M. Schlesinger4, P. J. Teuben5,
R. W. Thompson6, and A. Warnock III7

1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
2 National Radio Astronomy Observatory
3 NASA Goddard Space Flight Center
4 Raytheon ITSS
5 University of Maryland
6 Computer Sciences Corporation
7 A/WWW Enterprises

Received 29 May 2001 / Accepted 21 June 2001

Abstract. The Flexible Image Transport System – FITS – has been in use in the astronomical community for
over two decades. A newly updated version of the standard has recently been approved by the International
Astronomical Union FITS Working Group. This new version of the standard appears here in its entirety. As a
preface we briefly describe the process by which the standard evolves and revisions are approved, and note two
minor changes to NOST 100–2.0 which were adopted by the IAU FWG.

Key words. instrumentation: miscellaneous – methods: miscellaneous – techniques: miscellaneous – astronomical
databases: miscellaneous

Introduction

The Flexible Image Transport System – FITS – was orig-
inally developed in the late 1970s to enable the exchange
of astronomical image data between computers of different
type, with different word lengths and different means of
expressing numerical values. Although the IEEE numeri-
cal formats have been widely adopted by the computer in-
dustry during the past twenty years, and in 1989 the FITS
Standard was revised to utilize them, to this day computer
manufacturers have yet to agree upon a single standard for
bit order. In addition, independent of the numerical val-
ues themselves, a standard is essential for expressing the
relationship of the data to the instrument with which they
were obtained, to the position on the sky or association
with wavelength, or with other general descriptive infor-
mation that collectively constitutes the metadata for the
observation. FITS has evolved over the years, encompass-
ing new and more complex data structures in accord with
the increasing sophistication of new astronomical instru-
ments, and providing support for much more than the “im-

Send offprint requests to: R. J. Hanisch,
e-mail: hanisch@stsci.edu
? Appendices are only available in electronic form at

http://www.edpsciences.org

ages” implied by the name. Images, spectra, data cubes,
text tables, and binary tables are all supported, and with a
variety of conventions in nomenclature and structure these
basic elements have been combined to accommodate data
spanning the range from digital (and digitized) images to
output from computational simulations. Moreover, FITS
has been immensely successful as a community-wide data
format standard. No other scientific community has had
anything like the success the astronomy community has
had with FITS, and we are envied by many other commu-
nities for this cohesiveness. We have a process for amend-
ing and adding to the standard that assures broad commu-
nity participation, and although this sometimes makes the
process of change rather slow it helps to assure community
support and compliance. All major astronomical software
packages read and write FITS format data, and many have
adopted FITS not only for exchange with other programs
and facilities, but as a native run-time data format. The
inherent inefficiencies of FITS (such as sequential header
records, which when the allocated space is filled and a
new header record is desired to be written, requires all
following data to be rewritten) have been offset by the
tremendous improvements in CPU and I/O efficiencies of
modern desktop computers.

360 R. J. Hanisch et al.: FITS standard

Development of the NOST Standard

In 1987 NASA developed plans for the Astrophysics Data
System, an integrated approach to the management of
data from all astrophysics missions. Although much of
the original plan for the ADS failed to be realized (the
current ADS abstract and bibliographic services being a
notable exception), the policy decision was reached that
all NASA astrophysics mission data sets should be made
available to the community in the FITS format. In 1989
the NASA/Science Office of Standards and Technology –
NOST – established the FITS Support Office to assist
mission data managers in formatting their data in FITS.
(Responsibility for the NASA FITS Support Office tran-
sitioned to the Astrophysics Data Facility group at GSFC
in 1995.) NOST also commissioned the first of the FITS
Technical Panels whose task was to recast the FITS papers
(published in Astronomy and Astrophysics Supplements)
into a form acceptable as an official NASA standard.
The first draft standard, NOST 100–0.1, was released in
December 1990. Since then there have been six revisions
of the NOST standard, clarifying ambiguities and adding
new features with each version. The accompanying paper
represents NOST 100–2.0 and contains all FITS revisions
and extensions that have been approved by the IAU-FWG
through the end of 1998.

The NOST Technical Panel was responsible for de-
veloping the standards documents, making these avail-
able for public review and comment, and then evaluating
each comment received and making additional revisions
to the standard as necessary to address the comment.
All comments and the NOST Technical Panel reactions
to them were posted on the Internet and distributed by
e-mail to all who submitted comments. This process of
open review and discussion was audited by the NOST
Accreditation Panel to assure that community input was
open and unrestricted, and that the Technical Panel was
fully accountable to the community. Once approved by the
Accreditation Panel, the NOST FITS document becomes
the official NASA standard.

Adoption of the standard by the community

FITS is used world-wide in astronomy, and thus a NASA
FITS standard is not the final word. Recognizing the
value-added of the NOST FITS Technical Panel’s work,
however, the community has taken the NASA standard as
both a practical working document and has officially en-
dorsed it through regional and international organizations.
There are three regional FITS committees: the North
American FITS Committee, which is convened under the
auspices of the Working Group on Astronomical Software
of the American Astronomical Society, the European FITS
Committee, and the Japanese FITS Committee. Changes
to the FITS standard are voted on in these committees and
then forwarded for review to the FITS Working Group of

the International Astronomical Union. The IAU FWG is
the final voice of approval for revisions to the standard.

The NOST Technical Panel worked hard to resolve
all discrepancies between the various FITS papers and
to clarify all potentially ambiguous text. Nevertheless,
some areas of the document may still be unclear to some
readers or may be subject to misinterpretation. It is left
to future Technical Panels to continue the effort to re-
fine and clarify the document. These Technical Panels
will also need to incorporate the results of future FITS
negotiations into the document, such as the anticipated
World Coordinate Systems (WCS) agreements (available
at http://www.cv.nrao.edu/fits/documents/wcs/).

The NOST 100-2.0 document was approved by all
three of the regional FITS Committees, without dissent,
during 1999 and, in a vote taken on 12 October 2000, the
IAU FITS Working Group adopted the following resolu-
tion, without dissent:

The IAU FITS Working [IAU-FWG] Group adopts
the “Definition of the Flexible Image Transport
System (FITS)” [NOST 100–2.0] as the official ver-
sion of the FITS standards, superseding Astron.
Astrophys. Suppl. 44, 363–370 (1981) and the other
FITS papers listed in Sect. 2 of NOST 100-2.0, with
these interpretations/modifications of its text:
1. Use of the word “deprecated” in the first para-

graph of Sect. 7 “Random Groups Structure”
is understood to mean that binary table exten-
sions should be used in new astronomical ap-
plication areas instead of the random groups
format where either is appropriate and where
there is no historical precedent for random
groups. Existing applications of the random
groups structure (almost exclusively interferom-
etry) may continue to use random groups as
needed indefinitely;

2. It is noted that the following sentence in
B.2, “The size implied by the TDIMn keyword
will equal the element count specified in the
TFORMn keyword.” is not valid in the case
of variable length array columns. This sentence
should be replaced with wording similar to the
following: “The total number of elements in the
array equals the product of the dimensions spec-
ified in the TDIMn keyword. This size must be
equal to the repeat count on the TFORMn key-
word, or, in the case of columns which have
a “P” TFORMn datatype, equal to the array
length specified in the variable length array de-
scriptor (see Appendix B.1). In the special case
where the variable length array descriptor has
a size of zero, then the TDIMn keyword is not
applicable.”

Acknowledgements. The authors acknowledge the support of
NOST, in particular, Don Sawyer, for spearheading the stan-
dardization effort. The National Space Science Data Center

R. J. Hanisch et al.: FITS standard 361

and Astrophysics Data Facility at NASA Goddard Space Flight
Center have sponsored the FITS Support Office, staffed for
many years by Barry Schlesinger and overseen by Richard
A. White. The community owes immeasurable thanks to Don
Wells, National Radio Astronomy Observatory, for his tireless
efforts in building consensus in the FITS community and his
leadership of the IAU FITS Working Group. Preben Grosbøl,
European Southern Observatory, preceded Don in this role and
has also provided leadership within the European community.
Bill Pence (HEASARC, NASA Goddard Space Flight Center)
has written the most complete FITS I/O software package and
this is widely used in the community. Peter Bunclark (IoA,
Cambridge) and Arnold Rots (SAO) led the development of
the DATExxxx keywords for year 2000 compatibility. The au-
thors of the original FITS papers, Don Wells, Eric Greisen,
Ron Harten, Preben Grosbøl, Daniel Ponz, Randy Thompson,
José Muñoz, Bill Cotton, Doug Tody, and Bill Pence, deserve
great credit for their ground-breaking work and ingenuity in
adapting FITS to accommodate new data structures.

The members of the regional FITS committees (as of
October 1999) and the IAU FITS Working Group are listed
below.

North American FITS Committee
Peter Teuben, Chair U. Maryland
Steve Allen Lick Observatory
Daniel Durand HIA/CADC
Allen Farris STScI
Eric Greisen NRAO
Arne Henden USNO
Robert Kibrick Lick Observatory
William Lupton Keck Observatory
Eric Mandel CfA
Robert Narron IPAC
William Pence NASA GSFC
Jeffrey Percival U. Wisconsin
Arnold Rots CfA
Skip Schaller Steward Observatory
Barry Schlesinger Raytheon ITSS
Randall Thompson Computer Sciences Corp.
Doug Tody NOAO
Stephen Walton Cal. State U. Northridge
Archibald Warnock A/WWW Enterprises
Don Wells NRAO
Robert Hanisch STScI (ex officio)

European FITS Committee
Preben Grosbøl, Chair ESO
Peter Bunclark IoA, Cambridge
Anatoly Piskunov IoA, Russian Acad. Sci.
Ernst Raimond NFRA
Patrick Wallace RAL

Japanese FITS Committee
Shiro Nishimura, Chair NAOJ
Osamu Kanamitsu Fukuoka U.
Yasuhiro Murata ISAS
Eiji Nishihara NAOJ
Toshiyuki Sasaki NAOJ
Shigeomi Yoshida U. Tokyo

IAU FITS Working Group
Don Wells, Chair USA
Bill Cotton USA
John Glaspey USA
Eric Greisen USA
Preben Grosbøl Germany (ESO)
Robert Hanisch USA
Don Jennings USA
Osamu Kanamitsu Japan
Francois Ochsenbein France
William Pence USA
Bruce Peterson Australia
Anatoly Piskunov Russia
Ernst Raimond The Netherlands
Peter Teuben USA
Doug Tody USA
Pat Wallace UK
Wayne Warren USA

Definition of the Flexible Image Transport
System (FITS)

March 29, 1999

Standard

NOST 100–2.0

NASA/Science Office of Standards and Technology
Code 633.2

NASA Goddard Space Flight Center
Greenbelt, MD 20771

USA

Foreword to NOST 100–2.0

The NASA/Science Office of Standards and Technology
(NOST) of the National Space Science Data Center
(NSSDC) of the National Aeronautics and Space
Administration (NASA) has been established to serve the
space science communities in evolving cost effective, inter-
operable data systems. The NOST performs a number of
functions designed to facilitate the recognition, develop-
ment, adoption, and use of standards by the space science
communities.

Approval of a NOST standard requires verification by
the NOST that the following requirements have been met:
consensus of the Technical Panel, proper adjudication of
the comments received from the targeted space and Earth
science community, and conformance to the accreditation
process.

A NOST standard represents the consensus of the
Technical Panel convened by the NOST. Consensus is
established when the NOST Accreditation Panel deter-
mines that substantial agreement has been reached by the
Technical Panel. However, consensus does not necessarily

362 R. J. Hanisch et al.: FITS standard

imply that all members were in full agreement with ev-
ery item in the standard. NOST standards are not bind-
ing as published; however, they may serve as a basis for
mandatory standards when adopted by NASA or other
organizations.

A NOST standard may be revised at any time, de-
pending on developments in the areas covered by the stan-
dard. Also, within five years from the date of its issuance,
this standard will be reviewed by the NOST to deter-
mine whether it should 1) remain in effect without change,
2) be changed to reflect the impact of new technologies or
new requirements, or 3) be retired or canceled.

The Technical Panel that developed this version of the
standard consisted of the following members:

Robert J. Hanisch, Chair, Space Telescope Science Institute,
William D. Pence, Secretary, NASA GSFC,
Barry M. Schlesinger, Past Secretary, Raytheon STX,
Allen Farris, Space Telescope Science Institute,
Eric W. Greisen, National Radio Astronomy Observatory,
Peter J. Teuben, University of Maryland,
Randall W. Thompson, Computer Sciences Corporation,
Archibald Warnock, A/WWW Enterprises.

Members of the previous Technical Panels also included:
Lee E. Brotzman, Hughes STX,
Edward Kemper, Hughes STX,
Michael E. Van Steenberg, NASA GSFC,
Wayne H. Warren Jr., Hughes STX,
Richard A. White, NASA Goddard Space Flight Center.

Introduction to NOST 100–2.0

The Flexible Image Transport System (FITS) evolved out
of the recognition that a standard format was needed for
transferring astronomical data from one installation to
another. The original form, or Basic FITS (Wells et al.
1981), was designed for the transfer of images and con-
sisted of a binary array, usually multidimensional, pre-
ceded by an ASCII text header with information de-
scribing the organization and contents of the array. The
FITS concept was later expanded to accommodate more
complex data formats. A new format for image trans-
fer, random groups, was defined (Greisen & Harten 1981)
in which the data would consist of a series of arrays,
with each array accompanied by a set of associated pa-
rameters. These formats were formally endorsed by the
International Astronomical Union (IAU) in 1982 (IAU
Information Bulletin No. 49, 1983). Provisions for data
structures other than simple arrays or groups were made
later. These structures appear in extensions, each consist-
ing of an ASCII header followed by the data whose or-
ganization it describes. A set of general rules governing
such extensions (Grosbøl et al. 1988) and a particular ex-
tension, ASCII table (Harten et al. 1988), were endorsed
by the IAU General Assembly in 1988 (IAU Information
Bulletin No. 61, 1988). At the same General Assembly,
an IAU FITS Working Group (IAUFWG) was formed
(McNally 1988) under IAU Commission 5 (Astronomical

Data) with the mandate to maintain the existing FITS
standards and to review, approve, and maintain future
extensions to FITS, recommended practices for FITS, im-
plementations, and the thesaurus of approved FITS key-
words. In 1989, the IAUFWG approved a formal agree-
ment (Wells & Grosbøl 1990) for the representation of
floating point numbers. In 1994, the IAUFWG endorsed
two additional extensions, the image extension (Ponz et al.
1994) and the binary table extension (Cotton et al. 1995).
FITS was originally designed and defined for 9-track half-
inch magnetic tape. However, as improvements in tech-
nology have brought forward other data storage and data
distribution media, it has generally been agreed that the
FITS format is to be understood as a logical format and
not defined in terms of the physical characteristics of any
particular data storage medium. In 1994, the IAUFWG
adopted a set of rules (Grosbøl & Wells 1994) governing
the relation between the FITS logical record size and the
physical block size for sequential media and bitstream de-
vices. The IAUFWG also approved in 1997 an agreement
(Bunclark & Rots 1997) defining a new format for encod-
ing the date and time in the DATE, DATE-OBS, and other
related DATExxxx keywords to correct the ambiguity in
the original DATE keyword format beginning in the year
2000.

1. Overview

An archival format must be utterly portable and
self-describing, on the assumption that, apart from
the transcription device, neither the software nor
the hardware that wrote the data will be avail-
able when the data are read. “Preserving Scientific
Data on our Physical Universe”, p. 60. Steering
Committee for the Study on the Long-Term
Retention of Selected Scientific and Technical
Records of the Federal Government, [US] National
Research Council, National Academy Press 1995.

1.1. Purpose

This standard formally defines the FITS format for data
structuring and exchange that is to be used where appli-
cable as defined in Sect. 1.3. It is intended as a formal
codification of the FITS format that has been endorsed
by the IAU for transfer of astronomical data, fully con-
sistent with all actions and endorsements of the IAU and
the IAU FITS Working Group (IAUFWG). Minor am-
biguities and inconsistencies in FITS as described in the
original papers are eliminated.

1.2. Scope

This standard specifies the organization and content of
FITS data sets, including the header and data, for all
standard FITS formats: Basic FITS, the random groups
structure, the ASCII table extension, the image exten-
sion, and the binary table extension. It also specifies

R. J. Hanisch et al.: FITS standard 363

minimum structural requirements for new extensions and
general principles governing the creation of new exten-
sions. It specifies the relation between physical block sizes
and logical records for FITS files on bitstream devices
and sequential media. For headers, it specifies the proper
syntax for card images and defines required and reserved
keywords. For data, it specifies character and value rep-
resentations and the ordering of contents within the byte
stream. It defines the general rules to which new exten-
sions are required to conform.

1.3. Applicability

This standard describes an extensible data interchange
format particularly well suited for transport and archiv-
ing of arrays and tables of astronomical data. The IAU
has recommended that all astronomical computer facilities
support FITS for the interchange of binary data. It has
been NASA policy for its astrophysics projects to make
their data available in FITS format. This standard may
also be used to define the format for data transport in
other disciplines, as may be determined by the appropri-
ate authorities.

1.4. Organization of this document

Section 3 is a glossary of definitions, acronyms, and sym-
bols. In Sect. 4, this document describes the overall orga-
nization of a FITS file, the contents of the first (primary)
header and data, the rules for creating new FITS exten-
sions, and the relation between physical block sizes and
logical records for FITS files on bitstream devices and se-
quential media. The next two sections provide additional
details on the header and data, with a particular focus
on the primary header. Section 5 provides details about
header card image syntax and specifies those keywords
required and reserved in a primary header. Section 6 de-
scribes how different data types are represented in FITS.
The following sections describe the headers and data of
two standard FITS structures, the now deprecated ran-
dom groups records (Sect. 7) and the current standard ex-
tensions: ASCII table, image, and binary table (Sect. 8).
Throughout the document, deprecation of structures or
syntax is noted where relevant. Files containing depre-
cated features are valid FITS, but these features should
not be used in new files; the old files using them remain
standard because of the principle that no change in FITS
shall cause a valid FITS file to become invalid.

The Appendixes contain material that is not part of
the standard1. The first, Appendix A, provides a formal
expression of the keyword/value syntax for header card
images described in Sect. 5.2. Appendix B provides ex-
amples of widely accepted FITS conventions that are not
part of the formal FITS standard. It describes three con-
ventions in use with the binary table extension – one for

1 The Appendixes appear only in the electronic version of
this article.

handling multidimensional arrays, one for including vari-
able length arrays, and one for arrays of substrings.
Appendix C describes aspects of the implementation of
FITS on physical media not covered by the blocking agree-
ment. Appendix D is the appendix to the agreement en-
dorsed by the IAUFWG for a new format for keywords
expressing dates. The new format uses a four-digit value
for the year, and thus eliminates any ambiguity in dates
from the year 2000 and after. This appendix is not part
of the formal agreement. It contains a detailed discus-
sion of time systems. It has been slightly reformatted for
stylistic compatibility with the remainder of this docu-
ment. Appendix E lists the differences between this stan-
dard and the specifications of prior publications; it also
identifies those ambiguities in the documents endorsed by
the IAU on which this standard provides specific rules.
The next four appendixes provide reference information:
a tabular summary of the FITS keywords (Appendix F),
a list of the ASCII character set and a subset designated
ASCII text (Appendix G), a description of the IEEE float-
ing point format (Appendix H), and a list of the exten-
sion type names that have been reserved as of the date
this document was issued (Appendix I). Appendix J is a
list of NOST documents, including earlier versions of this
standard.

2. References

[The references for this document have been moved to
the end of the article, in conformance with the editorial
policies of the journal. This section is retained in order to
maintain consistency in section numbering with the NASA
Standard.]

3. Definitions, acronyms, and symbols

 Used to designate an ASCII blank.
ANSI American National Standards Institute.
Array A sequence of data values. This sequence corre-

sponds to the elements in a rectilinear, n-dimension
matrix (0 ≤ n ≤ 999).

Array value The value of an element of an array in a
FITS file, without the application of the associated
linear transformation to derive the physical value.

ASCII American National Standard Code for
Information Interchange.

ASCII blank The ASCII character for blank which is
represented by hexadecimal 20 (decimal 32).

ASCII character Any member of the 7-bit ASCII char-
acter set.

ASCII NULL Hexadecimal 00.
ASCII text ASCII characters hexadecimal 20–7E.
Basic FITS The FITS structure consisting of the pri-

mary header followed by a single primary data array.
Bit A single binary digit.
Byte An ordered sequence of eight consecutive bits

treated as a single entity.

364 R. J. Hanisch et al.: FITS standard

Card image A sequence of 80 bytes containing ASCII
text, treated as a logical entity.

Conforming extension An extension whose keywords
and organization adhere to the requirements for con-
forming extensions defined in Sect. 4.4.1 of this stan-
dard.

DAT 4 mm Digital Audio Tape.
Deprecated This term is used to refer to obsolete struc-

tures that should not be used for new applications but
remain valid.

Entry A single value in a table.
Extension A FITS HDU appearing after the primary

HDU in a FITS file.
Extension name The identifier used to distinguish a

particular extension HDU from others of the same
type, appearing as the value of the EXTNAME keyword.

Extension type An extension format.
Field A set of zero or more table entries collectively de-

scribed by a single format.
File A sequence of one or more records terminated by an

end-of-file indicator appropriate to the medium.
FITS Flexible Image Transport System.
FITS file A file with a format that conforms to the spec-

ifications in this document.
FITS structure One of the components of a FITS file:

the primary HDU, the random groups records, an ex-
tension, or, collectively, the special records following
the last extension.

Floating point A computer representation of a real
number.

Fraction The field of the mantissa (or significand) of a
floating point number that lies to the right of its im-
plied binary point.

Group parameter value The value of one of the pa-
rameters preceding a group in the random groups
structure, without the application of the associated lin-
ear transformation.

GSFC Goddard Space Flight Center.
HDU Header and Data Unit. A data structure consisting

of a header and the data the header describes. Note
that an HDU may consist entirely of a header with no
data records.

Header A series of card images organized within one or
more FITS logical records that describes structures
and/or data which follow it in the FITS file.

Heap A supplemental data area, currently defined to fol-
low the table in a binary table extension.

IAU International Astronomical Union.
IAUFWG International Astronomical Union FITS

Working Group.
IUE International Ultraviolet Explorer.
IEEE Institute of Electrical and Electronic Engineers.
IEEE NaN IEEE Not-a-Number value.
IEEE special values Floating point number byte pat-

terns that have a special, reserved meaning, such
as −0, ±∞, ±underflow, ±overflow, ±denormalized,
±NaN (see Appendix H).

Indexed keyword A keyword that is of the form of a
fixed root with an appended positive integer count.

Keyword The first eight bytes of a header card image.
Logical record A record comprising 2880 8-bit bytes.
Mandatory keyword A keyword that must be used in

all FITS files or a keyword required in conjunction
with particular FITS structures.

Mantissa Also known as significand. The component of
an IEEE floating point number consisting of an explicit
or implicit leading bit to the left of its implied binary
point and a fraction field to the right.

Matrix A data array of two or more dimensions.
NOST NASA/Science Office of Standards and

Technology.
Physical value The value in physical units represented

by an element of an array and possibly derived from
the array value using the associated, but optional, lin-
ear transformation.

Picture element A single location within an array.
Pixel Picture element.
Primary data array The data array contained in the

primary HDU.
Primary HDU The first HDU in a FITS file.
Primary header The first header in a FITS file, con-

taining information on the overall contents of the file
as well as on the primary data array.

Record A sequence of bits treated as a single logical
entity.

Reference point The point along a given coordinate
axis, given in units of pixel number, at which a value
and increment are defined.

Repeat count The number of values represented in a
binary table field.

Reserved keyword An optional keyword that may be
used only in the manner defined in this standard.

Special records A series of 23040-bit (2880 8-bit byte)
records, following the primary HDU, whose internal
structure does not otherwise conform to that for the
primary HDU or to that specified for a conforming
extension in this standard.

Standard extension A conforming extension whose
header and data content are specified explicitly in this
standard.

Type name The value of the XTENSION keyword, used to
identify the type of the extension in the data following.

Valid value A member of a data array or table corre-
sponding to an actual physical quantity.

4. FITS file organization

4.1. Overall

A FITS file shall be composed of the following FITS struc-
tures, in the order listed:

– Primary HDU;
– Conforming Extensions (optional);
– Other special records (optional).

R. J. Hanisch et al.: FITS standard 365

Each FITS structure shall consist of an integral number of
FITS logical records. The primary HDU shall start with
the first record of the FITS file. The first record of each
subsequent FITS structure shall be the record immedi-
ately following the last record of the preceding FITS struc-
ture. The size of a FITS logical record shall be 23 040 bits,
corresponding to 2880 8-bit bytes.

4.2. Individual FITS structures

The primary HDU and every extension HDU shall con-
sist of an integral number of header records consisting of
ASCII text, which may be followed by an integral number
of data records. The first record of data shall be the record
immediately following the last record of the header.

4.3. Primary header and data array

The first component of a FITS file shall be the primary
header. The primary header may, but need not be, fol-
lowed by a primary data array. The presence or absence
of a primary data array shall be indicated by the values
of the NAXIS or NAXISn keywords in the primary header
(Sect. 5.4.1.1).

4.3.1. Primary header

The header of a primary HDU shall consist of a series of
card images in ASCII text. All header records shall consist
of 36 card images. Card images without information shall
be filled with ASCII blanks (hexadecimal 20).

4.3.2. Primary data array

In FITS format, the primary data array shall consist of a
single data array of 0–999 dimensions. The random groups
convention in the primary data array is a more compli-
cated structure (see Sect. 7). The data values shall be a
byte stream with no embedded fill or blank space. The
first value shall be in the first position of the first primary
data array record. The first value of each subsequent row
of the array shall be in the position immediately following
the last value of the previous row. Arrays of more than one
dimension shall consist of a sequence such that the index
along axis 1 varies most rapidly, that along axis 2 next
most rapidly, and those along subsequent axes progres-
sively less rapidly, with that along axis m, where m is the
value of NAXIS, varying least rapidly; i.e., the elements of
an array A(x1, x2, . . . , xm) shall be in the order shown in
Fig. 1. The index count along each axis shall begin with 1
and increment by 1 up to the value of the NAXISn keyword
(Sect. 5.4.1.1).

If the data array does not fill the final record, the re-
mainder of the record shall be filled by setting all bits to
zero.

A(1, 1, . . . , 1),
A(2, 1, . . . , 1),

...,
A(NAXIS1, 1, . . . , 1),
A(1, 2, . . . , 1),
A(2, 2, . . . , 1),

...,
A(NAXIS1, 2, . . . , 1),

...,
A(1, NAXIS2, . . . , NAXISm),

...,
A(NAXIS1, NAXIS2, . . . , NAXISm)

Fig. 1. Arrays of more than one dimension shall consist of a se-
quence such that the index along axis 1 varies most rapidly and
those along subsequent axes progressively less rapidly. Except
for the location of the first element, array structure is indepen-
dent of record structure.

4.4. Extensions

4.4.1. Requirements for conforming extensions

All extensions, whether or not further described in this
standard, shall fulfill the following requirements to be in
conformance with this FITS standard.

4.4.1.1. Identity. Each extension type shall have a unique
type name, specified in the header according to the syntax
codified in Sect. 5.4.1.2. To preclude conflict, extension
type names must be registered with the IAUFWG. The
FITS Support Office shall maintain and provide a list of
the registered extensions.

4.4.1.2. Size specification. The total number of bits in the
data of each extension shall be specified in the header for
that extension, in the manner prescribed in Sect. 5.4.1.2.

4.4.1.3. Compatibility with existing FITS files. No exten-
sion shall be constructed that invalidates existing FITS
files.

4.4.2. Standard extensions

A standard extension shall be a conforming extension
whose organization and content are completely specified
in this standard. Only one FITS format shall be approved
for each type of data organization. Each standard exten-
sion shall have a unique name given by the value of the
XTENSION keyword (see Appendix I).

366 R. J. Hanisch et al.: FITS standard

4.4.3. Order of extensions

An extension may follow the primary HDU or another
conforming extension. Standard extensions and other con-
forming extensions may appear in any order in a FITS file.

4.5. Special records

The first 8 bytes of special records must not contain
the string “XTENSION”. It is recommended that they not
contain the string “SIMPLE ”. The records must have
the standard FITS 23040-bit record length. The con-
tents of special records are not otherwise specified by this
standard.

4.6. Physical blocking

4.6.1. Bitstream devices

For bitstream devices, including but not restricted to log-
ical file systems, FITS files shall be written with fixed
blocks of a physical block size equal to the 23040-bit FITS
logical record size.

4.6.2. Sequential media

4.6.2.1. Fixed block. For fixed block length sequential me-
dia, including but not restricted to optical disks (accessed
as a sequential set of records), QIC format 1/4-inch car-
tridge tapes, and local area networks, FITS files shall be
written as a bitstream, using the fixed block size of the
medium. If the end of the last logical record does not co-
incide with the end of a physical fixed block, all bits in
the remainder of the physical block containing the last
logical record shall be set to zero. After an end-of-file
mark has been detected in the course of reading a FITS
file, subsequent incomplete FITS logical records should be
disregarded.

4.6.2.2. Variable block. For variable block length sequen-
tial media, including but not restricted to 1/2-inch 9-track
tapes, DAT 4 mm cartridge tapes, and 8 mm cartridge
tapes, FITS files may be written with an integer blocking
factor equal to 1–10 logical records per physical block.

5. Headers

5.1. Card images

5.1.1. Syntax

Header card images shall consist of a keyword, a value
indicator (optional unless a value is present), a value (op-
tional), and a comment (optional). Except where specifi-
cally stated otherwise in this standard, keywords may ap-
pear in any order.

A formal syntax, giving a complete definition of the
syntax of FITS card images, is given in Appendix A.

It is intended as an aid in interpreting the text defining
the standard.

5.1.2. Components

5.1.2.1. Keyword (bytes 1–8). The keyword shall be a
left justified, 8-character, blank-filled, ASCII string with
no embedded blanks. All digits (hexadecimal 30 to
39,“0123456789”) and upper case Latin alphabetic char-
acters (hexadecimal 41 to 5A, “ABCDEFG HIJKLMN OPQRST
UVWXYZ”) are permitted; no lower case characters shall be
used. The underscore (hexadecimal 5F, “ ”) and hyphen
(hexadecimal 2D, “−”) are also permitted. No other char-
acters are permitted. For indexed keywords with a single
index the counter shall not have leading zeroes.

5.1.2.2. Value indicator (bytes 9–10). If this field contains
the ASCII characters “= ”, it indicates the presence of
a value field associated with the keyword, unless it is a
commentary keyword as defined in Sect. 5.4.2.4. If the
value indicator is not present or if it is a commentary
keyword then Cols. 9–80 may contain any ASCII text.

5.1.2.3. Value/comment (bytes 11–80). This field, when
used, shall contain the value, if any, of the keyword, fol-
lowed by optional comments. The value field may be a null
field; i.e., it may consist entirely of spaces. If the value field
is null, the value associated with the keyword is undefined.
If a comment is present, it must be preceded by a slash
(hexadecimal 2F, “/”). A space between the value and
the slash is strongly recommended. The value shall be the
ASCII text representation of a string or constant, in the
format specified in Sect. 5.2. The comment may contain
any ASCII text.

5.2. Value

The structure of the value field shall be determined by
the type of the variable. The value field represents a sin-
gle value and not an array of values. The value field must
be in one of two formats: fixed or free. The fixed format
is required for values of mandatory keywords and recom-
mended for values of all others. This standard imposes no
requirements on case sensitivity of character strings other
than those explicitly specified.

5.2.1. Character string

If the value is a fixed format character string, Col. 11 shall
contain a single quote (hexadecimal code 27, “’”); the
string shall follow, starting in Col. 12, followed by a closing
single quote (also hexadecimal code 27) that should not
occur before Col. 20 and must occur in or before Col. 80.
The character string shall be composed only of ASCII text.
A single quote is represented within a string as two succes-
sive single quotes, e.g., O’HARA = ’O’’HARA’. Leading
blanks are significant; trailing blanks are not.

R. J. Hanisch et al.: FITS standard 367

Free format character strings follow the same rules
as fixed format character strings except that the starting
and closing single quote characters may occur anywhere
within Cols. 11–80. Any columns preceding the starting
quote character and after Col. 10 must contain the space
character.

Note that there is a subtle distinction between the fol-
lowing 3 keywords:

KEYWORD1= ’’ / null string keyword

KEYWORD2= ’ ’ / blank keyword

KEYWORD3= / undefined keyword

The value of KEYWORD1 is a null, or zero length string
whereas the value of the KEYWORD2 is a blank string (nom-
inally a single blank character because the first blank in
the string is significant, but trailing blanks are not). The
value of KEYWORD3 is undefined and has an indeterminate
datatype as well, except in cases where the data type of
the specified keyword is explicitly defined in this standard.

The maximum allowed length of a keyword string is 68
characters (with the opening and closing quote characters
in Cols. 11 and 80, respectively). In general, no length
limit less than 68 is implied for character-valued keywords.

5.2.2. Logical

If the value is a fixed format logical constant, it shall ap-
pear as a T or F in Col. 30. A logical value is represented
in free format by a single character consisting of T or F.
This character must be the first non-blank character in
Cols. 11–80. The only characters that may follow this sin-
gle character are spaces, or a slash followed by an optional
comment (see Sect. 5.1.2.3).

5.2.3. Integer number

If the value is a fixed format integer, the ASCII represen-
tation shall be right justified in columns 11–30. An integer
consists of a “+” (hexadecimal 2B) or “−” (hexadecimal
2D) sign, followed by one or more ASCII digits (hexadeci-
mal 30 to 39), with no embedded spaces. The leading “+”
sign is optional. Leading zeros are permitted, but are not
significant. The integer representation described here is
always interpreted as a signed, decimal number.

A free format integer value follows the same rules as
fixed format integers except that it may occur anywhere
within Cols. 11–80.

5.2.4. Real floating point number

If the value is a fixed format real floating point number,
the ASCII representation shall appear, right justified, in
Cols. 11–30.

A floating point number is represented by a decimal
number followed by an optional exponent, with no em-
bedded spaces. A decimal number consists of a “+” (hex-
adecimal 2B) or “−” (hexadecimal 2D) sign, followed by a
sequence of ASCII digits containing a single decimal point

(“.”), representing an integer part and a fractional part of
the floating point number. The leading “+” sign is op-
tional. At least one of the integer part or fractional part
must be present. If the fractional part is present, the dec-
imal point must also be present. If only the integer part
is present, the decimal point may be omitted. The expo-
nent, if present, consists of an exponent letter followed by
an integer. Letters in the exponential form (“E” or “D”)
shall be upper case. Note: the full precision of 64-bit val-
ues cannot be expressed over the whole range of values
using the fixed format.

A free format floating point value follows the same
rules as fixed format floating point values except that it
may occur anywhere within Cols. 11–80.

5.2.5. Complex integer number

There is no fixed format for complex integer
numbers.

If the value is a complex integer number, the value
must be represented as a real part and an imaginary part,
separated by a comma and enclosed in parentheses. Spaces
may precede and follow the real and imaginary parts.
The real and imaginary parts are represented as integers
(Sect. 5.2.3). Such a representation is regarded as a single
value for the complex integer number. This representation
may be located anywhere within Cols. 11–80.

5.2.6. Complex floating point number

There is no fixed format for complex floating point
numbers.

If the value is a complex floating point number, the
value must be represented as a real part and an imagi-
nary part, separated by a comma and enclosed in paren-
theses. Spaces may precede and follow the real and imag-
inary parts. The real and imaginary parts are represented
as floating point values (Sect. 5.2.4). Such a representa-
tion is regarded as a single value for the complex floating
point number. This representation may be located any-
where within Cols. 11–80.

5.3. Units

The units of all FITS header keyword values, with the
exception of measurements of angles, should conform with
the recommendations in the IAU Style Manual (McNally
1988). For angular measurements given as floating point
values and specified with reserved keywords, degrees are
the recommended units (with the units, if specified, given
as ’deg’).

5.4. Keywords

5.4.1. Mandatory keywords

Mandatory keywords are required in every HDU as de-
scribed in the remainder of this subsection. They may

368 R. J. Hanisch et al.: FITS standard

Table 1. Mandatory keywords for primary header.

1 SIMPLE

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
...
(other keywords)
...

last END

Table 2. Interpretation of valid BITPIX value.

Value Data Represented

8 Character or unsigned binary integer
16 16-bit twos-complement binary integer
32 32-bit twos-complement binary integer
−32 IEEE single precision floating point
−64 IEEE double precision floating point

be used only as described in this standard. Values of the
mandatory keywords must be written in fixed format.

5.4.1.1. Principal. The SIMPLE keyword is required to be
the first keyword in the primary header of all FITS files.
Principal mandatory keywords other than SIMPLE are re-
quired in all FITS headers. The card images of any pri-
mary header must contain the keywords shown in Table 1
in the order given. No other keywords may intervene be-
tween the SIMPLE keyword and the last NAXISn keyword.

The total number of bits in the primary data array,
exclusive of fill that is needed after the data to com-
plete the last record (Sect. 4.3.2), is given by the following
expression:

Nbits = |BITPIX| × (NAXIS1 × NAXIS2 × · · · × NAXISm), (1)

where Nbits is non-negative and the number of bits exclud-
ing fill, m is the value of NAXIS, and BITPIX and the NAXISn
represent the values associated with those keywords.

SIMPLE keyword. The value field shall contain a logical
constant with the value T if the file conforms to this stan-
dard. This keyword is mandatory for the primary header
and is not permitted in extension headers. A value of F
signifies that the file does not conform to this standard.

BITPIX keyword. The value field shall contain an integer.
The absolute value is used in computing the sizes of data
structures. It shall specify the number of bits that rep-
resent a data value. The only valid values of BITPIX are
given in Table 2.

NAXIS keyword. The value field shall contain a non-
negative integer no greater than 999, representing the

Table 3. Mandatory keywords in conforming extensions.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
...
(other keywords, including . . .)
PCOUNT

GCOUNT
...

last END

number of axes in the associated data array. A value of
zero signifies that no data follow the header in the HDU.

NAXISn keywords. The value field of this indexed keyword
shall contain a non-negative integer, representing the num-
ber of elements along axis n of a data array. The NAXISn
must be present for all values n = 1,...,NAXIS, and for
no other values of n. A value of zero for any of the NAXISn
signifies that no data follow the header in the HDU. If
NAXIS is equal to 0, there should not be any NAXISn
keywords.

END keyword. This keyword has no associated value.
Columns 9–80 shall be filled with ASCII blanks.

5.4.1.2. Conforming extensions. All conforming extensions
must use the keywords defined in Table 3 in the order
specified. No other keywords may intervene between the
XTENSION keyword and the last NAXISn keyword. This
organization is required for any conforming extension,
whether or not further specified in this standard.

The total number of bits in the extension data array
exclusive of fill that is needed after the data to complete
the last record such as that for the primary data array
(Sect. 4.3.2) is given by the following expression:

Nbits = |BITPIX| × GCOUNT ×
(PCOUNT + NAXIS1× NAXIS2× · · ·×NAXISm), (2)

where Nbits is non-negative and the number of bits ex-
cluding fill, m is the value of NAXIS, and BITPIX, GCOUNT,
PCOUNT, and the NAXISn represent the values associated
with those keywords.

XTENSION keyword. The value field shall contain a char-
acter string giving the name of the extension type. This
keyword is mandatory for an extension header and must
not appear in the primary header. For an extension that
is not a standard extension, the type name must not be
the same as that of a standard extension.

The IAUFWG may specify additional type names that
must be used only to identify specific types of extensions;
the full list shall be available from the FITS Support
Office.

R. J. Hanisch et al.: FITS standard 369

PCOUNT keyword. The value field shall contain an integer
that shall be used in any way appropriate to define the
data structure, consistent with Eq. (2).

GCOUNT keyword. The value field shall contain an integer
that shall be used in any way appropriate to define the
data structure, consistent with Eq. (2).

EXTEND keyword. The use of extensions necessitates a sin-
gle additional keyword in the primary header of the FITS
file. If the FITS file may contain extensions, a card im-
age with the keyword EXTEND and the value field con-
taining the logical value T must appear in the primary
header immediately after the last NAXISn card image, or,
if NAXIS=0, the NAXIS card image. The presence of this
keyword with the value T in the primary header does not
require that extensions be present.

5.4.2. Other reserved keywords

These keywords are optional but may be used only as de-
fined in this standard. They apply to any FITS struc-
ture with the meanings and restrictions defined below.
Any FITS structure may further restrict the use of these
keywords.

5.4.2.1. Keywords describing the history or physical
construction of the HDU

DATE keyword. Starting January 1, 2000, the following for-
mat shall be used. FITS writers should commence writ-
ing the value of the DATE keyword in this format starting
January 1, 1999 and before January 1, 2000. The value
field shall contain a character string giving the date on
which the HDU was created, in the form YYYY-MM-DD, or
the date and time when the HDU was created, in the form
YYYY-MM-DDThh:mm:ss[.sss. . .], where YYYY shall be the
four-digit calendar year number, MM the two-digit month
number with January given by 01 and December by 12,
and DD the two-digit day of the month. When both date
and time are given, the literal T shall separate the date and
time, hh shall be the two-digit hour in the day, mm the two-
digit number of minutes after the hour, and ss[.sss. . .]
the number of seconds (two digits followed by an optional
fraction) after the minute. No fields may be defaulted and
no leading zeroes omitted. The decimal part of the seconds
field is optional and may be arbitrarily long, so long as it
is consistent with the rules for value formats of Sect. 5.2.

The value of the DATE keyword shall always be ex-
pressed in UTC when in this format, for all data sets cre-
ated on earth.

The following format may appear on files written be-
fore January 1, 2000. The value field contains a character
string giving the date on which the HDU was created, in
the form DD/MM/YY, where DD is the day of the month,
MM the month number with January given by 01 and
December by 12, and YY the last two digits of the year, the

first two digits being understood to be 19. Specification of
the date using Universal Time is recommended but not
assumed.

Copying of a FITS file does not require changing any
of the keyword values in the file’s HDUs.

ORIGIN keyword. The value field shall contain a character
string identifying the organization or institution responsi-
ble for creating the FITS file.

BLOCKED keyword. This keyword may be used only in the
primary header. It shall appear within the first 36 card
images of the FITS file. (Note: this keyword thus cannot
appear if NAXIS is greater than 31, or if NAXIS is greater
than 30 and the EXTEND keyword is present.) Its presence
with the required logical value of T advises that the phys-
ical block size of the FITS file on which it appears may
be an integral multiple of the logical record length, and
not necessarily equal to it. Physical block size and logical
record length may be equal even if this keyword is present
or unequal if it is absent. It is reserved primarily to pre-
vent its use with other meanings. Since the issuance of
version 1 of this standard, the BLOCKED keyword has been
deprecated.

5.4.2.2. Keywords describing observations

DATE-OBS keyword. The format of the value field for
DATE-OBS keywords shall follow the prescriptions for the
DATE keyword (Sect. 5.4.2.1). Either the 4-digit year for-
mat or the 2-digit year format may be used for observation
dates from 1900 through 1999 although the 4-digit format
is preferred.

When the format with a four-digit year is used, the
default interpretations for time shall be UTC for dates be-
ginning 1972-01-01 and UT before. Other date and time
scales are permissible. The value of the DATE-OBS key-
word shall be expressed in the principal time system or
time scale of the HDU to which it belongs; if there is any
chance of ambiguity, the choice shall be clarified in com-
ments. The value of DATE-OBS shall be assumed to refer to
the start of an observation, unless another interpretation
is clearly explained in the comment field. Explicit specifi-
cation of the time scale is recommended. By default, times
for TAI and times that run simultaneously with TAI, e.g.,
UTC and TT, will be assumed to be as measured at the
detector (or, in practical cases, at the observatory). For
coordinate times such as TCG, TCB, and TDB which are
tied to an unambiguous coordinate system, the default
shall be time as if the observation had taken place at the
origin of the coordinate time system. Conventions may be
developed that use other time systems. Appendix D of
this document contains the appendix to the agreement on
a four digit year, which discusses time systems in some
detail.

When the value of DATE-OBS is expressed in the
two-digit year form, allowed for files written before

370 R. J. Hanisch et al.: FITS standard

January 1, 2000 with a year in the range 1900–1999, there
is no default assumption as to whether it refers to the
start, middle or end of an observation.

DATExxxx keywords. The value fields for all keywords be-
ginning with the string DATE whose value contains date,
and optionally time, information shall follow the prescrip-
tions for the DATE-OBS keyword.

TELESCOP keyword. The value field shall contain a char-
acter string identifying the telescope used to acquire the
data associated with the header.

INSTRUME keyword. The value field shall contain a charac-
ter string identifying the instrument used to acquire the
data associated with the header.

OBSERVER keyword. The value field shall contain a char-
acter string identifying who acquired the data associated
with the header.

OBJECT keyword. The value field shall contain a character
string giving a name for the object observed.

EQUINOX keyword. The value field shall contain a floating
point number giving the equinox in years for the celestial
coordinate system in which positions are expressed.

EPOCH keyword. The value field shall contain a floating
point number giving the equinox in years for the celes-
tial coordinate system in which positions are expressed.
Starting with Version 1, this standard has deprecated the
use of the EPOCH keyword and thus it shall not be used
in FITS files created after the adoption of this standard;
rather, the EQUINOX keyword shall be used.

5.4.2.3. Bibliographic keywords

AUTHOR keyword. The value field shall contain a charac-
ter string identifying who compiled the information in the
data associated with the header. This keyword is appro-
priate when the data originate in a published paper or are
compiled from many sources.

REFERENC keyword. The value field shall contain a char-
acter string citing a reference where the data associated
with the header are published.

5.4.2.4. Commentary keywords

COMMENT keyword. This keyword shall have no associated
value; Cols. 9–80 may contain any ASCII text. Any num-
ber of COMMENT card images may appear in a header.

HISTORY keyword. This keyword shall have no associated
value; Cols. 9–80 may contain any ASCII text. The text

should contain a history of steps and procedures associ-
ated with the processing of the associated data. Any num-
ber of HISTORY card images may appear in a header.

Keyword hield is blank. Columns 1–8 contain ASCII
blanks. Columns 9–80 may contain any ASCII text. Any
number of card images with blank keyword fields may ap-
pear in a header.

5.4.2.5. Array keywords. These keywords are used to de-
scribe the contents of an array, either alone or in a series
of random groups (Sect. 7). They are optional, but if they
appear in the header describing an array or groups, they
must be used as defined in this section of this standard.
They shall not be used in headers describing other struc-
tures unless the meaning is the same as that for a primary
or groups array.

BSCALE keyword. This keyword shall be used, along with
the BZERO keyword, when the array pixel values are not
the true physical values, to transform the primary data
array values to the true physical values they represent,
using Eq. (3). The value field shall contain a floating point
number representing the coefficient of the linear term in
the scaling equation, the ratio of physical value to array
value at zero offset. The default value for this keyword
is 1.0.

BZERO keyword. This keyword shall be used, along with
the BSCALE keyword, when the array pixel values are not
the true physical values, to transform the primary data ar-
ray values to the true values. The value field shall contain
a floating point number representing the physical value
corresponding to an array value of zero. The default value
for this keyword is 0.0.

The transformation equation is as follows:

physical value = BZERO+ BSCALE× array value. (3)

BUNIT keyword. The value field shall contain a character
string, describing the physical units in which the quanti-
ties in the array, after application of BSCALE and BZERO,
are expressed. These units must follow the prescriptions
of Sect. 5.3.

BLANK keyword. This keyword shall be used only in head-
ers with positive values of BITPIX (i.e., in arrays with in-
teger data). Columns 1–8 contain the string, “BLANK ”
(ASCII blanks in Cols. 6–8). The value field shall contain
an integer that specifies the representation of array values
whose physical values are undefined.

CTYPEn keywords. The value field shall contain a character
string, giving the name of the coordinate represented by
axis n.

R. J. Hanisch et al.: FITS standard 371

CRPIXn keywords. The value field shall contain a floating
point number, identifying the location of a reference point
along axis n, in units of the axis index. This value is based
upon a counter that runs from 1 to NAXISn with an incre-
ment of 1 per pixel. The reference point value need not
be that for the center of a pixel nor lie within the actual
data array. Use comments to indicate the location of the
index point relative to the pixel.

CRVALn keywords. The value field shall contain a floating
point number, giving the value of the coordinate specified
by the CTYPEn keyword at the reference point CRPIXn.
Units must follow the prescriptions of Sect. 5.3.

CDELTn keywords. The value field shall contain a floating
point number giving the partial derivative of the coordi-
nate specified by the CTYPEn keywords with respect to the
pixel index, evaluated at the reference point CRPIXn, in
units of the coordinate specified by the CTYPEn keyword.
These units must follow the prescriptions of Sect. 5.3.

CROTAn keywords. This keyword is used to indicate a ro-
tation from a standard coordinate system described by
the CTYPEn to a different coordinate system in which the
values in the array are actually expressed. Rules for such
rotations are not further specified in this standard; the
rotation should be explained in comments. The value field
shall contain a floating point number giving the rotation
angle in degrees between axis n and the direction implied
by the coordinate system defined by CTYPEn.

DATAMAX keyword. The value field shall always contain a
floating point number, regardless of the value of BITPIX.
This number shall give the maximum valid physical value
represented by the array, exclusive of any special values.

DATAMIN keyword. The value field shall always contain a
floating point number, regardless of the value of BITPIX.
This number shall give the minimum valid physical value
represented by the array, exclusive of any special values.

5.4.2.6. Extension keywords. These keywords are used to
describe an extension and should not appear in the pri-
mary header.

EXTNAME keyword. The value field shall contain a charac-
ter string, to be used to distinguish among different ex-
tensions of the same type, i.e., with the same value of
XTENSION, in a FITS file.

EXTVER keyword. The value field shall contain an integer,
to be used to distinguish among different extensions in a
FITS file with the same type and name, i.e., the same
values for XTENSION and EXTNAME. The values need not
start with 1 for the first extension with a particular value
of EXTNAME and need not be in sequence for subsequent

values. If the EXTVER keyword is absent, the file should be
treated as if the value were 1.

EXTLEVEL keyword. The value field shall contain an inte-
ger, specifying the level in a hierarchy of extension levels
of the extension header containing it. The value shall be 1
for the highest level; levels with a higher value of this key-
word shall be subordinate to levels with a lower value. If
the EXTLEVEL keyword is absent, the file should be treated
as if the value were 1.

5.4.3. Additional keywords

5.4.3.1. Requirements. New keywords may be devised in
addition to those described in this standard, so long as
they are consistent with the generalized rules for keywords
and do not conflict with mandatory or reserved keywords.

5.4.3.2. Restrictions. No keyword in the primary header
shall specify the presence of a specific extension in a FITS
file; only the EXTEND keyword described in Sect. 5.4.1.2
shall be used to indicate the possible presence of ex-
tensions. No keyword in either the primary or exten-
sion header shall explicitly refer to the physical block
size, other than the deprecated BLOCKED keyword of
Sect. 5.4.2.1.

6. Data representation

Primary and extension data shall be represented in one
of the formats described in this section. FITS data shall
be interpreted to be a byte stream. Bytes are in order of
decreasing significance. The byte that includes the sign bit
shall be first, and the byte that has the ones bit shall be
last.

6.1. Characters

Each character shall be represented by one byte. A char-
acter shall be represented by its 7-bit ASCII (ANSI 1977)
code in the low order seven bits in the byte. The high-
order bit shall be zero.

6.2. Integers

6.2.1. Eight-bit

Eight-bit integers shall be unsigned binary integers, con-
tained in one byte.

6.2.2. Sixteen-bit

Sixteen-bit integers shall be twos-complement signed bi-
nary integers, contained in two bytes.

372 R. J. Hanisch et al.: FITS standard

6.2.3. Thirty-two-bit

Thirty-two-bit integers shall be twos-complement signed
binary integers, contained in four bytes.

6.2.4. Unsigned integers

Unsigned sixteen-bit integers can be represented in FITS
files by subtracting 32 768 from each value (thus offsetting
the values into the range of a signed sixteen-bit integer)
before writing them to the FITS file. The BZERO keyword
(or the TZEROn keyword in the case of binary table columns
with TFORMn = ’I’) must also be included in the header
with its value set to 32 768 so that FITS reading software
will add this offset to the raw values in the FITS file,
thus restoring them to the original unsigned integer val-
ues. Unsigned thirty-two-bit integers can be represented
in FITS files in a similar way by applying an offset of
2147483648 (231) to the data values.

6.3. IEEE-754 floating point

Transmission of 32- and 64-bit floating point data within
the FITS format shall use the ANSI/IEEE-754 standard
(IEEE 1985). BITPIX = -32 and BITPIX = -64 signify
32- and 64-bit IEEE floating point numbers, respectively;
the absolute value of BITPIX is used for computing the
sizes of data structures. The full IEEE set of number
forms is allowed for FITS interchange, including all special
values.

The BLANK keyword should not be used when BITPIX =
-32 or -64; rather, the IEEE NaN should be used to rep-
resent an undefined value. Use of the BSCALE and BZERO
keywords is not recommended.

Appendix H has additional details on the IEEE format.

7. Random groups structure

Although it is standard FITS, the random groups struc-
ture has been used almost exclusively for applications in
radio interferometry; outside this field, few FITS readers
can read data in random groups format. The binary table
extension (Sect. 8.3) can accommodate the structure de-
scribed by random groups. While existing FITS files use
the format, and it is therefore included in this standard,
its use for future applications has been deprecated since
the issue of Version 1 of this standard.

7.1. Keywords

7.1.1. Mandatory keywords

The SIMPLE keyword is required to be the first keyword
in the primary header of all FITS files, including those
with random groups records. If the random groups for-
mat records follow the primary header, the card images
of the primary header must use the keywords defined in
Table 4 in the order specified. No other keywords may

Table 4. Mandatory keywords in primary header preceding
random groups.

1 SIMPLE

2 BITPIX

3 NAXIS

4 NAXIS1

5 NAXISn, n=2, . . . , value of NAXIS
...
(other keywords, which must include . . .)
GROUPS

PCOUNT

GCOUNT
...

last END

intervene between the SIMPLE keyword and the last
NAXISn keyword.

The total number of bits in the random groups records
exclusive of the fill described in Sect. 7.2 is given by the
following expression:

Nbits = |BITPIX|×GCOUNT×
(PCOUNT + NAXIS2 × NAXIS3× · · ·×NAXISm), (4)

where Nbits is non-negative and the number of bits ex-
cluding fill, m is the value of NAXIS, and BITPIX, GCOUNT,
PCOUNT, and the NAXISn represent the values associated
with those keywords.

7.1.1.1. SIMPLE keyword. The card image containing this
keyword is structured in the same way as if a primary data
array were present (Sect. 5.4.1).

7.1.1.2. BITPIX keyword. The card image containing this
keyword is structured as prescribed in Sect. 5.4.1.

7.1.1.3. NAXIS keyword. The value field shall contain an
integer ranging from 1 to 999, representing one more than
the number of axes in each data array.

7.1.1.4. NAXIS1 keyword. The value field shall contain the
integer 0, a signature of random groups format indicating
that there is no primary data array.

7.1.1.5. NAXISn Keywords (n = 2, . . . , value of NAXIS).
The value field shall contain an integer, representing the
number of positions along axis n-1 of the data array in
each group.

7.1.1.6. GROUPS keyword. The value field shall contain the
logical constant T. The value T associated with this key-
word implies that random groups records are present.

R. J. Hanisch et al.: FITS standard 373

7.1.1.7. PCOUNT keyword. The value field shall contain an
integer equal to the number of parameters preceding each
array in a group.

7.1.1.8. GCOUNT keyword. The value field shall contain an
integer equal to the number of random groups present.

7.1.1.9. END keyword. The card image containing this key-
word is structured as described in Sect. 5.4.1.

7.1.2. Reserved keywords

7.1.2.1. PTYPEn keywords. The value field shall contain a
character string giving the name of parameter n. If the
PTYPEn keywords for more than one value of n have the
same associated name in the value field, then the data
value for the parameter of that name is to be obtained
by adding the derived data values of the corresponding
parameters. This rule provides a mechanism by which a
random parameter may have more precision than the ac-
companying data array elements; for example, by sum-
ming two 16-bit values with the first scaled relative to the
other such that the sum forms a number of up to 32-bit
precision.

7.1.2.2. PSCALn keywords. This keyword shall be used,
along with the PZEROn keyword, when the nth FITS group
parameter value is not the true physical value, to trans-
form the group parameter value to the true physical values
it represents, using Eq. (5). The value field shall contain
a floating point number representing the coefficient of the
linear term in Eq. (5), the scaling factor between true val-
ues and group parameter values at zero offset. The default
value for this keyword is 1.0.

7.1.2.3. PZEROn keywords. This keyword shall be used,
along with the PSCALn keyword, when the nth FITS group
parameter value is not the true physical value, to trans-
form the group parameter value to the physical value. The
value field shall contain a floating point number, repre-
senting the true value corresponding to a group parame-
ter value of zero. The default value for this keyword is 0.0.
The transformation equation is as follows:

physical value = PZEROn +

PSCALn× group parameter value. (5)

7.2. Data sequence

Random groups data shall consist of a set of groups. The
number of groups shall be specified by the GCOUNT keyword
in the associated header record. Each group shall consist of
the number of parameters specified by the PCOUNT keyword
followed by an array with the number of elements Nelem

given by the following expression:

Nelem = (NAXIS2× NAXIS3× · · · × NAXISm), (6)

where Nelem is the number of elements in the data array in
a group, m is the value of NAXIS, and the NAXISn represent
the values associated with those keywords.

The first parameter of the first group shall appear in
the first location of the first data record. The first ele-
ment of each array shall immediately follow the last pa-
rameter associated with that group. The first parameter
of any subsequent group shall immediately follow the last
element of the array of the previous group. The arrays
shall be organized internally in the same way as an or-
dinary primary data array. If the groups data do not fill
the final record, the remainder of the record shall be filled
with zero values in the same way as a primary data array
(Sect. 4.3.2). If random groups records are present, there
shall be no primary data array.

7.3. Data representation

Permissible data representations are those listed in Sect. 6.
Parameters and elements of associated data arrays shall
have the same representation. Should more precision be
required for an associated parameter than for an element
of a data array, the parameter shall be divided into two
or more addends, represented by the same value for the
PTYPEn keyword. The value shall be the sum of the physi-
cal values, which may have been obtained from the group
parameter values using the PSCALn and PZEROn keywords.

8. Standard extensions

8.1. The ASCII table extension

Data shall appear as an ASCII table extension if the pri-
mary header of the FITS file has the keyword EXTEND set
to T and the first keyword of that extension header has
XTENSION= ’TABLE ’.

8.1.1. Mandatory keywords

The header of an ASCII table extension must use the
keywords defined in Table 5. The first keyword must
be XTENSION; the seven keywords following XTENSION
(BITPIX . . . TFIELDS) must be in the order specified with
no intervening keywords.

XTENSION keyword. The value field shall contain the char-
acter string value text ’TABLE ’.

BITPIX keyword. The value field shall contain the inte-
ger 8, denoting that the array contains ASCII characters.

NAXIS keyword. The value field shall contain the integer 2,
denoting that the included data array is two-dimensional:
rows and columns.

374 R. J. Hanisch et al.: FITS standard

Table 5. Mandatory keywords in ASCII table extensions.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXIS1

5 NAXIS2

6 PCOUNT

7 GCOUNT

8 TFIELDS
...
(other keywords, which must include . . .)
TBCOLn, n=1, 2, . . . , k where k is the value

of TFIELDS
TFORMn, n=1, 2, . . . , k where k is the value

of TFIELDS
...

last END

NAXIS1 keyword. The value field shall contain a non-
negative integer, giving the number of ASCII characters
in each row of the table.

NAXIS2 keyword. The value field shall contain a non-
negative integer, giving the number of rows in the table.

PCOUNT keyword. The value field shall contain the inte-
ger 0.

GCOUNT keyword. The value field shall contain the inte-
ger 1; the data records contain a single table.

TFIELDS keyword. The value field shall contain a non-
negative integer representing the number of fields in each
row. The maximum permissible value is 999.

TBCOLn keywords. The value field of this indexed keyword
shall contain an integer specifying the column in which
field n starts. The first column of a row is numbered 1.

TFORMn keywords. The value field of this indexed keyword
shall contain a character string describing the format in
which field n is encoded. Only the formats in Table 6, in-
terpreted as ANSI FORTRAN-77 (ANSI 1978) input for-
mats and discussed in more detail in Sect. 8.1.5, are per-
mitted for encoding. Format codes must be specified in
upper case. Other format editing codes common to ANSI
FORTRAN-77 such as repetition, positional editing, scal-
ing, and field termination are not permitted. All values in
numeric fields have a number base of ten (i.e., they are
decimal); binary, octal, hexadecimal, and other represen-
tations are not permitted.

Table 6. Valid TFORMn format values in TABLE extensions.

Field Value Data Type

Aw Character
Iw Decimal integer

Fw.d Single precision real
Ew.d Single precision real, exponential notation
Dw.d Double precision real, exponential notation

END keyword. This keyword has no associated value.
Columns 9–80 shall contain ASCII blanks.

8.1.2. Other reserved keywords

In addition to the mandatory keywords defined in
Sect. 8.1.1, the following keywords may be used to de-
scribe the structure of an ASCII table data array. They
are optional, but if they appear within an ASCII table
extension header, they must be used as defined in this
section of this standard.

TSCALn keywords. This indexed keyword shall be used,
along with the TZEROn keyword, when the quantity in
field n does not represent a true physical quantity. The
value field shall contain a floating point number repre-
senting the coefficient of the linear term in Eq. (7), which
must be used to compute the true physical value of the
field. The default value for this keyword is 1.0. This key-
word may not be used for A-format fields.

TZEROn keywords. This indexed keyword shall be used,
along with the TSCALn keyword, when the quantity in
field n does not represent a true physical quantity. The
value field shall contain a floating point number represent-
ing the zero point for the true physical value of field n. The
default value for this keyword is 0.0. This keyword may
not be used for A-format fields.

The transformation equation used to compute a true
physical value from the quantity in field n is

physical value = TZEROn + TSCALn × field value. (7)

TNULLn keywords. The value field for this indexed keyword
shall contain the character string that represents an unde-
fined value for field n. The string is implicitly blank filled
to the width of the field.

TTYPEn keywords. The value field for this indexed keyword
shall contain a character string, giving the name of field n.
It is recommended that only letters, digits, and underscore
(hexadecimal code 5F, “ ”) be used in the name. String
comparisons with the values of TTYPEn keywords should
not be case sensitive. The use of identical names for dif-
ferent fields should be avoided.

R. J. Hanisch et al.: FITS standard 375

TUNITn keywords. The value field shall contain a character
string describing the physical units in which the quantity
in field n, after any application of TSCALn and TZEROn, is
expressed. Units must follow the prescriptions in Sect. 5.3.

8.1.3. Data sequence

The table is constructed from a two-dimensional array of
ASCII characters. The row length and the number of rows
shall be those specified, respectively, by the NAXIS1 and
NAXIS2 keywords of the associated header records. The
number of characters in a row and the number of rows in
the table shall determine the size of the character array.
Every row in the array shall have the same number of
characters. The first character of the first row shall be
at the start of the record immediately following the last
header record. The first character of subsequent rows shall
follow immediately the character at the end of the previous
row, independent of the record structure. The positions in
the last data record after the last character of the last row
of the data array shall be filled with ASCII blanks.

8.1.4. Fields

Each row in the array shall consist of a sequence of fields,
with one entry in each field. For every field, the ANSI
FORTRAN-77 format of the information contained, lo-
cation in the row of the beginning of the field and (op-
tionally) the field name, shall be specified in keywords of
the associated header records. A separate format keyword
must be provided for each field. The location and format
of fields shall be the same for every row. Fields may over-
lap. There may be characters in a table row that are not
included in any field.

8.1.5. Entries

All data in an ASCII table extension field shall be ASCII
text in a format that conforms to the rules for fixed field
input in ANSI FORTRAN-77 (ANSI 1978) format, as de-
scribed below, including implicit decimal points. The only
possible formats shall be those specified in Table 6. If val-
ues of −0 and +0 must be distinguished, then the sign
character should appear in a separate field in character
format. TNULLn keywords may be used to specify a char-
acter string that represents an undefined value in each
field. The characters representing an undefined value may
differ from field to field but must be the same within a
field. Writers of ASCII tables should select a format ap-
propriate to the form, range of values, and accuracy of the
data in the table.

The value of a character-formatted (Aw) field is a
character string of width w containing the characters in
columns TBCOLn through TBCOLn+w− 1.

The value of an integer-formatted (Iw) field is an in-
teger number determined by removing all blanks from
columns TBCOLn through TBCOLn+w− 1 and interpreting

the remaining, right-justified characters as a signed deci-
mal integer. A blank field has value 0. All characters other
than blanks, the decimal integers (“0” through “9”) and a
single leading sign character (“+” and “-”) are forbidden.

The value of a real-formatted field (Fw.d, Ew.d, Dw.d)
is a real number determined from the w characters from
columns TBCOLn through TBCOLn+w − 1. The value is
formed by

1. Discarding all blank characters and right-justifying the
non-blank characters;

2. Interpreting the first non-blank characters as a nu-
meric string consisting of a single optional sign (“+”
or “-”) followed by one or more decimal digits (“0”
through “9”) optionally containing a single decimal
point (“.”). The numeric string is terminated by the
end of the right-justified field or by the occurrence of
any character other than a decimal point (“.”) and
the decimal integers (“0” through “9”). If the string
contains no explicit decimal point, then the implicit
decimal point is taken as immediately preceding the
rightmost d digits of the string, with leading zeros as-
sumed if necessary;

3. If the numeric string is terminated by a
(a) “+” or “-”, interpreting the following string as an

exponent in the form of a signed decimal integer,
or

(b) “E”, or “D”, interpreting the following string as an
exponent of the form E or D followed by an option-
ally signed decimal integer constant;

4. The exponent string, if present, is terminated by the
end of the right-justified string;

5. Characters other than those specified above are
forbidden.

The numeric value of the table field is then the value of
the numeric string multiplied by ten (10) to the power
of the exponent string, i.e., value = numeric string ×
10(exponent string). The default exponent is zero and a
blankfield has value zero. There is no difference between
the F, D, and E formats; the content of the string deter-
mines its interpretation. Numbers requiring more preci-
sion and/or range than the local computer can support
may be represented. It is good form to specify a D format
in TFORMn for a column of an ASCII table when that col-
umn will contain numbers that cannot be accurately rep-
resented in 32-bit IEEE binary format (see Appendix H).

Note that the above definitions allow for embedded
blanks anywhere in integer-formatted and real-formatted
fields and implicit decimal points in real-formatted fields.
FITS reading tasks will have to honor these flexibilities.
However, since these flexibilities are likely to cause con-
fusion and possible misinterpretation, it is recommended
that FITS writing tasks write tables with explicit deci-
mal points and no embedded or trailing blanks whenever
possible.

376 R. J. Hanisch et al.: FITS standard

Table 7. Mandatory keywords in image extensions.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXISn, n = 1, . . . , NAXIS
5 PCOUNT

6 GCOUNT
...
(other keywords . . .)
...

last END

8.2. Image extension

Data shall appear as an image extension if the primary
header of the FITS file has the keyword EXTEND set to T
and the first keyword of that extension header has
XTENSION= ’IMAGE ’.

8.2.1. Mandatory keywords

The XTENSION keyword is required to be the first keyword
of all image extensions. The card images in the header
of an image extension must use the keywords defined in
Table 7 in the order specified. No other keywords may
intervene between the XTENSION and GCOUNT keywords.

XTENSION keyword. The value field shall contain the char-
acter string value text ’IMAGE ’.

BITPIX keyword. The value field shall contain an integer.
The absolute value is used in computing the sizes of data
structures. It shall specify the number of bits that rep-
resent a data value. The only valid values of BITPIX are
given in Table 2.

NAXIS keyword. The value field shall contain a non-
negative integer no greater than 999, representing the
number of axes in the associated data array. A value of
zero signifies that no data follow the header in the image
extension.

NAXISn keywords. The value field of this indexed keyword
shall contain a non-negative integer, representing the num-
ber of elements along axis n of a data array. The NAXISn
must be present for all values n = 1, ..., NAXIS, and
for no other values of n. A value of zero for any of the
NAXISn signifies that no data follow the header in the im-
age extension. If NAXIS is equal to 0, there should not be
any NAXISn keywords.

PCOUNT keyword. The value field shall contain the inte-
ger 0.

Table 8. Mandatory keywords in binary table extensions.

1 XTENSION

2 BITPIX

3 NAXIS

4 NAXIS1

5 NAXIS2

6 PCOUNT

7 GCOUNT

8 TFIELDS
...
(other keywords, which must include . . .)
TFORMn, n=1, 2, . . . , k where k is the value

of TFIELDS
...

last END

GCOUNT keyword. The value field shall contain the inte-
ger 1; each image extension contains a single array.

END keyword. This keyword has no associated value.
Columns 9–80 shall be filled with ASCII blanks.

8.2.2. Units

The units of all header keyword values in an image exten-
sion shall follow the prescriptions in Sect. 5.3.

8.2.3. Data sequence

The data format shall be identical to that of a primary
data array as described in Sect. 4.3.2.

8.3. Binary table extension

Data shall appear as a binary table extension if the pri-
mary header of the FITS file has the keyword EXTEND set
to T and the first keyword of that extension header has
XTENSION= ’BINTABLE’.

8.3.1. Mandatory keywords

The XTENSION keyword is the first keyword of all binary
table extensions. The seven keywords following (BITPIX
. . . TFIELDS) must be in the order specified in Table 8,
with no intervening keywords.

XTENSION keyword. The value field shall contain the char-
acter string ’BINTABLE’.

BITPIX keyword. The value field shall contain the inte-
ger 8, denoting that the array is an array of 8-bit bytes.

NAXIS keyword. The value field shall contain the integer 2,
denoting that the included data array is two-dimensional:
rows and columns.

R. J. Hanisch et al.: FITS standard 377

NAXIS1 keyword. The value field shall contain a non-
negative integer, giving the number of 8-bit bytes in each
row of the table.

NAXIS2 keyword. The value field shall contain a non-
negative integer, giving the number of rows in the table.

PCOUNT keyword. The value field shall contain the number
of bytes that follow the table in the associated extension
data.

GCOUNT keyword. The value field shall contain the inte-
ger 1; the data records contain a single table.

TFIELDS keyword. The value field shall contain a non-
negative integer representing the number of fields in each
row. The maximum permissible value is 999.

TFORMn keywords. The value field of this indexed keyword
shall contain a character string of the form rTa. The re-
peat count r is the ASCII representation of a non-negative
integer specifying the number of elements in field n. The
default value of r is 1; the repeat count need not be present
if it has the default value. A zero element count, indicating
an empty field, is permitted. The data type T specifies the
data type of the contents of field n. Only the data types in
Table 9 are permitted. The format codes must be speci-
fied in upper case. For fields of type P, the only permitted
repeat counts are 0 and 1. The additional characters a
are optional and are not further defined in this standard.
Table 9 lists the number of bytes each data type occupies
in a table row. The first field of a row is numbered 1. The
total number of bytes nrow in a table row, given by

nrow =
TFIELDS∑
i=1

ribi (8)

where ri is the repeat count for field i, bi is the number of
bytes for the data type in field i, and TFIELDS is the value
of that keyword, must equal the value of NAXIS1.

END keyword. This keyword has no associated value.
Columns 9–80 shall contain ASCII blanks.

8.3.2. Other reserved keywords

In addition to the mandatory keywords defined in
Sect. 8.3.1, these keywords may be used to describe the
structure of a binary table data array. They are op-
tional, but if they appear within a binary table extension
header, they must be used as defined in this section of this
standard.

TTYPEn keywords. The value field for this indexed keyword
shall contain a character string, giving the name of field n.

Table 9. Valid TFORMn data types in BINTABLE extensions.

TFORMn 8-bit
value Description Bytes

L Logical 1
X Bit *
B Unsigned byte 1
I 16-bit integer 2
J 32-bit integer 4
A Character 1
E Single precision floating point 4
D Double precision floating point 8
C Single precision complex 8
M Double precision complex 16
P Array Descriptor 8

∗ Number of 8-bit bytes needed to contain all bits.

It is recommended that only letters, digits, and underscore
(hexadecimal code 5F, “ ”) be used in the name. String
comparisons with the values of TTYPEn keywords should
not be case sensitive. The use of identical names for dif-
ferent fields should be avoided.

TUNITn keywords. The value field shall contain a character
string describing the physical units in which the quantity
in field n, after any application of TSCALn and TZEROn, is
expressed. Units must follow the prescriptions in Sect. 5.3.

TNULLn keywords. The value field for this indexed key-
word shall contain the integer that represents an unde-
fined value for field n of data type B, I, or J. The keyword
may not be used if field n is of any other data type.

TSCALn keywords. This indexed keyword shall be used,
along with the TZEROn keyword, when the quantity in
field n does not represent a true physical quantity. It may
not be used if the format of field n is A, L, or X. The
interpretation for fields of type P is not defined. A pro-
posed interpretation is described in Appendix B.1. For
fields with all other data types, the value field shall con-
tain a floating point number representing the coefficient
of the linear term in Eq. (7), which is used to compute
the true physical value of the field, or, in the case of the
complex data types C and M, of the real part of the field,
with the imaginary part of the scaling factor set to zero.
The default value for this keyword is 1.0.

TZEROn keywords. This indexed keyword shall be used,
along with the TSCALn keyword, when the quantity in
field n does not represent a true physical quantity. It may
not be used if the format of field n is A, L, or X. The inter-
pretation for fields of type P is not defined. A proposed in-
terpretation is described in Appendix B.1. For fields with
all other data types, the value field shall contain a floating
point number representing the true physical value corre-
sponding to a value of zero in field n of the FITS file,

378 R. J. Hanisch et al.: FITS standard

Table 10. Valid TDISPn format values in BINTABLE extensions.
w is the width in characters of displayed values, m is the mini-
mum number of digits displayed, d is the number of digits to
right of decimal, and e is number of digits in exponent. The .m

and Ee fields are optional.

Field Value Data Type

Aw Character
Lw Logical

Iw.m Integer
Bw.m Binary, integers only
Ow.m Octal, integers only
Zw.m Hexadecimal, integers only
Fw.d Single precision real

Ew.dEe Single precision real, exponential notation
ENw.d Engineering; E format with exponent multi-

ple of 3
ESw.d Scientific; same as EN but nonzero leading

digit if not zero
Gw.dEe General; appears as F if significance not lost,

else E.
Dw.dEe Double precision real, exponential notation

or, in the case of the complex data types C and M, in the
real part of the field, with the imaginary part set to zero.
The default value for this keyword is 0.0. Equation (7) is
used to compute a true physical value from the quantity
in field n.

TDISPn keywords. The value field of this indexed keyword
shall contain a character string describing the format rec-
ommended for the display of the contents of field n. If the
table value has been scaled, the physical value, derived us-
ing Eq. (7), shall be displayed. All elements in a field shall
be displayed with a single, repeated format. For purposes
of display, each byte of bit (type X) and byte (type B) ar-
rays is treated a an unsigned integer. Arrays of type A may
be terminated with a zero byte. Only the format codes in
Table 10, discussed in Sect. 8.3.4, are permitted for en-
coding. The format codes must be specified in upper case.
If the Bw.m, Ow.m, and Zw.m formats are not readily avail-
able to the reader, the Iw.m display format may be used
instead, and if the ENw.d and ESw.d formats are not avail-
able, Ew.d may be used. The meaning of this keyword is
not defined for fields of type P in this standard but may
be defined in conventions using such fields.

THEAP keyword. The value field of this keyword shall con-
tain an integer providing the separation, in bytes, between
the start of the main data table and the start of a sup-
plemental data area called the heap. The default value
shall be the product of the values of NAXIS1 and NAXIS2.
This keyword shall not be used if the value of PCOUNT is
zero. A proposed application of this keyword is presented
in Appendix B.1.

TDIMn keywords. The value field of this indexed key-
word shall contain a character string describing how to

interpret the contents of field n as a multidimensional ar-
ray, providing the number of dimensions and the length
along each axis. The form of the value is not further spec-
ified by this standard. A proposed convention is described
in Appendix B.2.

8.3.3. Data sequence

The data in a binary table extension shall consist of a
Main Data Table which may, but need not, be followed
by additional bytes. The positions in the last data record
after the last additional byte, or, if there are no additional
bytes, the last character of the last row of the data array,
shall be filled by setting all bits to zero.

8.3.3.1. Main data table. The table is constructed from a
two-dimensional byte array. The number of bytes in a row
shall be specified by the value of the NAXIS1 keyword and
the number of rows shall be specified by the NAXIS2 key-
word of the associated header records. Within a row, fields
shall be stored in order of increasing column number, as
determined from the n of the TFORMn keywords. The num-
ber of bytes in a row and the number of rows in the table
shall determine the size of the byte array. Every row in
the array shall have the same number of bytes. The first
row shall begin at the start of the record immediately fol-
lowing the last header record. Subsequent rows shall begin
immediately following the end of the previous row, with
no intervening bytes, independent of the record structure.
Words need not be aligned along word boundaries.

Each row in the array shall consist of a sequence of
fields. The number of elements in each field and their data
type shall be specified in keywords of the associated header
records. A separate format keyword must be provided for
each field. The location and format of fields shall be the
same for every row. Fields may be empty, if the repeat
count specified in the value of the TFORMn keyword of the
header is 0. The following data types, and no others, are
permitted.

Logical. If the value of the TFORMn keyword specifies data
type L, the contents of field n shall consist of ASCII T in-
dicating true or ASCII F, indicating false. A 0 byte (hex-
adecimal 0) indicates an invalid value.

Bit array. If the value of the TFORMn keyword specifies data
type X, the contents of field n shall consist of a sequence of
bits starting with the most significant bit; the bits follow-
ing shall be in order of decreasing significance, ending with
the least significant bit. A bit array shall be composed of
an integral number of bytes, with those bits following the
end of the data set to zero. No null value is defined for bit
arrays.

Character. If the value of the TFORMn keyword specifies
data type A, field n shall contain a character string of zero

R. J. Hanisch et al.: FITS standard 379

or more members, composed of ASCII text. This charac-
ter string may be terminated before the length specified by
the repeat count by an ASCII NULL (hexadecimal code
00). Characters after the first ASCII NULL are not de-
fined. A string with the number of characters specified by
the repeat count is not NULL terminated. Null strings
are defined by the presence of an ASCII NULL as the first
character.

Unsigned 8-Bit integer. If the value of the TFORMn keyword
specifies data type B, the data in field n shall consist of
unsigned 8-bit integers, with the most significant bit first,
and subsequent bits in order of decreasing significance.
Null values are given by the value of the associated TNULLn
keyword.

16-Bit integer. If the value of the TFORMn keyword speci-
fies data type I, the data in field n shall consist of twos-
complement signed 16-bit integers, contained in two bytes.
The most significant byte shall be first. Within each byte
the most significant bit shall be first, and subsequent bits
shall be in order of decreasing significance. Null values
are given by the value of the associated TNULLn keyword.
Unsigned integers can be represented using the convention
described in Sect. 6.2.4.

32-Bit integer. If the value of the TFORMn keyword spec-
ifies data type J, the data in field n shall consist of
twos-complement signed 32-bit integers, contained in four
bytes. The most significant byte shall be first, and sub-
sequent bytes shall be in order of decreasing significance.
Within each byte, the most significant bit shall be first,
and subsequent bits shall be in order of decreasing signifi-
cance. Null values are given by the value of the associated
TNULLn keyword. Unsigned integers can be represented us-
ing the convention described in Sect. 6.2.4.

Single precision floating point. If the value of the TFORMn
keyword specifies data type E, the data in field n shall con-
sist of ANSI/IEEE-754 (IEEE 1985) 32-bit floating point
numbers, as described in Appendix H. All IEEE special
values are recognized. The IEEE NaN is used to represent
invalid values.

Double precision floating point. If the value of the TFORMn
keyword specifies data type D, the data in field n shall con-
sist of ANSI/IEEE-754 (IEEE 1985) 64-bit double preci-
sion floating point numbers, as described in Appendix H.
All IEEE special values are recognized. The IEEE NaN is
used to represent invalid values.

Single precision complex. If the value of the TFORMn key-
word specifies data type C, the data in field n shall con-
sist of a sequence of pairs of 32-bit single precision float-
ing point numbers. The first member of each pair shall

represent the real part of a complex number, and the sec-
ond member shall represent the imaginary part of that
complex number. If either member contains a NaN, the
entire complex value is invalid.

Double precision complex. If the value of the TFORMn key-
word specifies data type M, the data in field n shall consist
of a sequence of pairs of 64-bit double precision floating
point numbers. The first member of each pair shall rep-
resent the real part of a complex number, and the second
member of the pair shall represent the imaginary part of
that complex number. If either member contains a NaN,
the entire complex value is invalid.

Array descriptor. If the value of the TFORMn keyword speci-
fies data type P, the data in field n shall consist of not more
than one pair of 32-bit integers. The meaning of these in-
tegers is not defined by this standard. The proposed ap-
plication of this data type is described in Appendix B.1.

8.3.3.2. Bytes following main table. The main data table
shall be followed by zero or more bytes, as specified by
the value of the PCOUNT keyword. The meaning of these
bytes is not further defined by this standard. One pro-
posed application is described in Appendix B.1.

8.3.4. Data display

Character data are encoded under format code Aw. If the
character datum has length less than or equal to w, it
is represented on output right-justified in a string of w
characters. If the character datum has length greater than
w, the first w characters of the datum are represented on
output in a string of w characters. Character data are not
surrounded by single or double quotation marks unless
those marks are themselves part of the data value.

Logical data are encoded under format code Lw.
Logical data are represented on output with the charac-
ter T for true or F for false right justified in a blank-filled
string of w characters. A null value may be represented by
a completely blank string of w characters.

Integer data (including bit X and byte B type fields) are
encoded under format codes Iw.m, Bw.m, Ow.m, and Zw.m.
The default value of m is one and the “.m” is optional. The
first letter of the code specifies the number base for the
encoding with I for decimal (10), B for binary (2), O for
octal (8), and Z for hexadecimal (16). Hexadecimal format
uses the upper-case letters A through F to represent dec-
imal values 10 through 15. The output field consists of w
characters containing zero or more leading blanks followed
by a minus if the internal datum is negative followed by
the magnitude of the internal datum in the form of an un-
signed integer constant in the specified number base with
only as many leading zeros as are needed to have at least m
numeric digits. Note that m ≤ w is allowed if all values are
positive, but m < w is required if any values are negative.

380 R. J. Hanisch et al.: FITS standard

If the number of digits required to represent the integer
datum exceeds w, then the output field consists of a string
of w asterisk (*) characters.

Real data are encoded under format codes Fw.d,
Ew.dEe, Dw.dEe, ENw.d, and ESw.d. In all cases, the out-
put is a string of w characters including the decimal point,
any sign characters, and any exponent including the expo-
nent’s indicators, signs, and values. If the number of digits
required to represent the real datum exceeds w, then the
output field consists of a string of w asterisk (*) charac-
ters. In all cases, d specifies the number of digits to ap-
pear to the right of the decimal point. The F format code
output field consists of w − d − 1 characters containing
zero or more leading blanks followed by a minus if the
internal datum is negative followed by the absolute mag-
nitude of the internal datum in the form of an unsigned
integer constant. These characters are followed by a dec-
imal point (“.”) and d characters giving the fractional
part of the internal datum, rounded by the normal rules
of arithmetic to d fractional digits. For the E and D for-
mat codes, an exponent is taken such that the fraction
0.1 ≤ |datum|/10exponent < 1.0. The fraction (with appro-
priate sign) is output with an F format of width w− e− 2
characters with d characters after the decimal followed by
an E or D followed by the exponent as a signed e+ 1 char-
acter integer with leading zeros as needed. The default
value of e is 2 when the Ee portion of the format code is
omitted. If the exponent value will not fit in e + 1 char-
acters but will fit in e + 2 then the E (or D) is omitted
and the wider field used. If the exponent value will not
fit (with a sign character) in e + 2 characters, then the
entire w-character output field is filled with asterisks (*).
The ES format code is processed in the same manner as
the E format code except that the exponent is taken so
that 1.0 ≤ fraction < 10. The EN format code is processed
in the same manner as the E format code except that the
exponent is taken to be an integer multiple of 3 and so
that 1.0 ≤ fraction < 1000.0. All real format codes have
number base 10. There is no difference between E and D
format codes on input other than an implication with the
latter of greater precision in the internal datum.

The Gw.dEe format code may be used with data of any
type. For data of type integer, logical, or character, it is
equivalent to Iw, Lw, or Aw, respectively. For data of type
real, it is equivalent to an F format (with different num-
bers of characters after the decimal) when that format will
accurately represent the value and is equivalent to an E
format when the number (in absolute value) is either very
small or very large. Specifically, for real values outside the
range 0.1 − 0.5×10−d−1 ≤ value < 10d − 0.5, it is equiv-
alent to Ew.dEe. For real values within the above range,
it is equivalent to Fw′.d′ followed by 2 + e blanks, where

w′ = w− e− 2 and d′ = d− k for k = 0, 1, . . . , d if the real
datum value lies in the range 10k−1 (1 − 0.5×10−d) ≤
value ≤ 10k (1 − 0.5×10−d).

Complex data are encoded with any of the real data
formats as described above. The same format is used for
the real and imaginary parts. It is recommended that the
2 values be separated by a comma and enclosed in paren-
theses with a total field width of 2w + 3.

9. Restrictions on changes

Any structure that is a valid FITS structure shall remain
a valid FITS structure at all future times. Use of certain
valid FITS structures may be deprecated by this or future
FITS standard documents.

References

ANSI 1977, American National Standard for Information
Processing: Code for Information Interchange, ANSI X3.4–
1977 (ISO 646) (New York: American National Standards
Institute, Inc.)

ANSI 1978, American National Standard for Information
Processing: Programming Language FORTRAN, ANSI
X3.9–1978 (ISO 1539) (New York: American National
Standards Institute, Inc.)

Bunclark, P., & Rots, A. 1997 (ftp://nssdc.gsfc.nasa.gov/
pub/fits/year2000 agreement.txt)

Cotton, W. D., Tody, D. B., & Pence, W. D. 1995, A&AS, 113,
159

Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 371
Grosbøl, P., Harten, R. H., Greisen, E. W., & Wells, D. C.

1988, A&AS, 73, 359
Grosbøl, P., & Wells, D. C. 1994 (ftp://nssdc.gsfc.nasa.

gov/pub/fits/blocking94.txt)
Harten, R. H., Grosbøl, P., Greisen, E. W., & Wells, D. C.

1988, A&AS, 73, 365
IAU Info. Bull. 1983, 49
IAU Info. Bull. 1988, 61
IEEE 1985, American National Standard – IEEE Standard for

Binary Floating Point Arithmetic, ANSI/IEEE 754–1985
(New York: American National Standards Institute, Inc.)

Jennings, D. G., Pence, W. D., Folk, M., & Schlesinger, B. M.
1997 (http://fits.gsfc.nasa.gov/group.html)

McNally, D., ed. 1988, Transactions of the IAU, Proc. of the
Twentieth General Assembly (Dordrecht: Kluwer)

Muñoz, J. R. 1989, ESA IUE Newslett., 32, 12
NRAO 1990, Going AIPS, National Radio Astronomy

Observatory, Charlottesville, VA
Ponz, J. D., Thompson, R. W., & Muñoz, J. R. 1994, A&AS,

105, 53
Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS,

44, 363
Wells, D. C., & Grosbøl, P. 1990 (ftp://nssdc.gsfc.nasa.

gov/pub/fits/fp agree.ps)

