Tricks of Resolution and Dynamics

A disk-like object that isn't: IRAS 23033+5951

Brenda Matthews (HIA/NRC, Canada) Michael Reid (CfA/McMaster)

Reid & Matthews, 2007, submitted to ApJ

Motivation: Understanding Highmass Star Formation

monolithic collapse

competitive accretion

Deconstructing a High-mass SFR

IRAS 23033+5951 (10⁴ L_☉; 2300 M_☉)
 Discovered by IRAS (d=3.5 kpc)
 Relatively quiescent (no HII region)
 Potential to easily interpret data at moderate resolution

BIMA array observations (2003-2004)
 HCO⁺, H¹³CO⁺, H¹³CN, N₂H⁺, C³⁴S, SiO & CH₃OH
 3 mm continuum

22 June, 2007 Transformational Science with ALMA: Through

Summary of Core Observations

>> $N_{H2} \sim 10^{21.3}$ cm⁻² for ρ Opn Typical of massive star-forming clumps (i.e., Plume et al. 1997)

core

Summary of Outflow Observations

HCO⁺ traces the known, dominant outflow in the region Centre seems offset from continuum peaks

22^s

20

 24^{s}

• Evidence for other possible outflows is seen in CH₃OH and SiO, i.e., multiple sources per continuum core?

Infall

- Expect optically thick lines skewed to the blue (MMS 2)
- MMS 1 profile is skewed to the red (outflow contamination?)

Infall is not clear in these cores. MMS 2 is the strongest case.

Transformational

22 June, 2007

A disk-like object in IRAS 23033

- The disk-like morphology appears in $H^{13}CO^+$ 1-0 and N_2H^+ 1-0
- The first moment of H¹³CO⁺ shows a distinct velocity gradient from -50 km/s in the north to -55 km/s in the south
- Position velocity diagrams of N_2H^+ and $H^{13}CO^+$ along the long axis show the same gradient.

When is a disk not a disk?

Distanc	Disk	Disk	Referenc
(kpc)	Radius (AU)	Mass (M⊙ÿ	
2	130	3	Shepherd
0.73	330	1-8	Patel et
0.46	800	?	Zhibo et
2.8	1000	?	Pestaloz
1.7	1700	10	2004 Cesaroni
7.7	4000	23	1997 Beltran
7.7	4000	4	2004 Beltran
7.7	8000	5	al 2004 Beltran
7.9	8000	87	2004 Beltran
2.8	15000	400	2004 Sandell
3.5	HUGE! (~43500)	520	2003 Reid & M 2007 (su to ApJ)
	Distanc (kpc) 2 0.73 0.46 2.8 1.7 7.7 7.7 7.7 7.7 7.7 7.9 2.8 3.5	Distanc Disk (kpc) Radius (kpc) Radius 2 130 0.73 330 0.46 800 2.8 1000 1.7 1700 7.7 4000 7.7 4000 7.7 4000 7.7 8000 7.9 8000 2.8 15000 3.5 HUGE! (~43500)	DistancDiskDiskDisk(kpc)RadiusMass213030.733301-80.46800?2.81000?1.71700107.74000237.7400047.7800057.98000872.8150004003.5HUGE ! (~43500)520

et al. al. 2005 al. 1995 zi et al. et al. et al. et et al. et al. et al. latthews bmitted

22 June, 2007

An Inside-out Picture: Cores in a Disk

 A "disk" of diameter 80,000 AU with a centrally peaked H¹³CO⁺ distribution but no density peak (unlikely to be a Galli & Shu "pseudodisk")

Cores with associated outflows have likely condensed along the length of the "disk"
 Despite the velocity gradient, the object is likely a remnant of the natal cloud
 Short-spacings data are critical to assessing the large-scale structure

An Inside-out Picture: Cores in a Disk

Familiar lessons...

- Multi-scale, multi-transition observations matter!
- ALMA will be able to search for circumstellar disks within the IRAS 23033 cores (100 AU = 0.03" at 3.5 kpc)
 (max resolution 0.015" at 300 GHz)
- Targets needed!
 - Need more isolated, quiescent high-mass starforming regions to observe
 - Identification of candidates can preceed ALMA

Identifying New Isolated SFRs

One component of the JCMT Legacy Survey is 850 micron mapping of the Galactic Plane
+10 < l < +65; -1 < b < +1
+102.5 < l < +141.5; -1 < b < +1
188 sq. degrees
334 hours in first two years
Mass limit: 40 M_☉ to the edge of the Galaxy

• New insights ...

22 June, 2007

Identifying New Isolated SFRs

One com is 850 m
+ 10 <
+102.5
334 hour
Mass lin

- 1. Evolutionary Sequence of High-mass Star Formation
- 2. Triggering and the star-forming content of molecular clouds
- 3. Cold Dark Clouds and Molecular Cloud Formation
- 4. Galactic Structure

• New insights ...

22 June, 2007

Closer to home... The Gould Belt

SCUBA-2: 80 sq. deg. (Av > 3) + 565 sq. deg. (1 < Av <3)
HARP-B: CO, ¹³CO, C¹⁸O 3-2 in cores and clouds
POL-2: continuum polarimetry of cores and clouds

A SCUBA-2 Update

Scheduled to arrive in Hawaii Sept 24 Commissioning arrays, at least one at 850 micron and one at 450 micron • Full complement of sub-arrays (4 per λ) ✤ Early 2008 Full survey science - August 2008 □ HARP-B observing is in SV stage ■ POL-2 com./science will follow SCUBA-2

Thanks!

