Transformational Science with ALMA: Through Disks to Stars and Planets

Distributions of Hot Molecules in Young Circumstellar Disks

Hideko Nomura¹, Yuri Aikawa², Yoshitsugu Nakagawa², Tom Millar¹ 1. Queen's University Belfast, 2. Kobe Univ.

1 Introduction

Chemical Structure of Young Disks

inner disk hot H_2O , CH_3OH H_2S , H_2S , dustdust \rightarrow ALMA observations

outer disk near midplane cold, dense

Disk Accretion & Chemistry

Disk Accretion: gas disk dispersal gaseous planet formation, migration of (proto)planets

→ Theory: MRI? Observation?

Icy mantle evaporation → observational diagnosis of disk accretion?

Obs. of Solid & Gas-Phase Molecules

Obs. of Molecular Abundances

Molecules	Orion Hot Core	AFGL 2591	TMC1
H ₂ O	1.0(-5)	3.6(-5)	
H_2S	$\leq 5.0(-6)$	$\leq 1.0(-4)$	2.5(-10)
SO	1.5(-7)	2.0(-8)	2.5(-9)
SO_2	9.4(-8)	6.3(-7)	5.0(-10)
NH ₃	1-10(-6)	2.0(-8)	1.0(-8)
HNC	3.0(-7)	3.0(-7)	1.0(-8)
CH ₃ CN	7.8(-9)	2.0(-8)	5.0(-10)
CH ₃ OH	1.0(-6)	8.0(-8)	1.0(-9)

(from Charnley et al. '92, Charnley '97, Ikeda et al. '01, Doty et al. '02, Lee et al. '96)

Disk Accretion & Chemistry

Disk Accretion: gas disk dispersal gaseous planet formation, migration of (proto)planets

← Theory: MRI? Observation?

Icy mantle evaporation → observational diagnosis of disk accretion? 2 Models

Gas, dust temp. & density profiles

gas dens.: hydrostatic equilibrium (M_{*}=2.5 M_s) surface dens.: steady accretion model dM_{acc}=(0.5-20)x10⁻⁸M_s/yr (=const.) gas temp.: local thermal equilibrium

$$\begin{split} &\Gamma_{\mathsf{X}}: \mathsf{X} \text{ ray heat., } \Gamma_{\mathsf{pe}}: \mathsf{FUV heat., } \Lambda_{\mathsf{line}}: \\ &\mathsf{radiative cooling, } \mathsf{L}_{\mathsf{gr}}: \mathsf{gas-grain collisions} \\ &\mathsf{dust temp.: local radiative equilibrium} \\ &(\mathsf{irradiation}(\mathsf{T}_*\!=\!\mathsf{10000K}), \mathsf{viscous heating}) \\ &\mathsf{dust dens.: coagulation equation} \\ &\mathsf{for settling dust particles} \\ &(\mathsf{Nomura et al. 2007}) \end{split}$$

Chemical Model

209 species, 2203 gas-phase reactions Initial condition: ice evaporation

$CH_4, C_2H_2, C_2H_4, C_2H_6, CO, CO_2, O_2, H_2O, H_2CO, CH_3OH, C_2H_5OH, N_2, NH_3, H_2S, OCS$

(Nomura & Millar 2004)

3 Results

Time evolution of Mol. Abundances

Parent species(CH₃OH, H₂S) →Daughter species (CH₃OCH₃, SO₂ etc.) timescale : t~10⁴⁻⁵yr

Spatial Distributions of Molecules z=1.5H

Spatial Distribution of Line emission

Spatial Distribution of Line emission

4 Summary

Distribution of hot molecules in inner region of young circumstellar disks (evap. of ice + gas-phase reactions) Timescale of chemical reactions: ~10⁴⁻⁵yr accretion time $> 10^{4-5}$ yr \rightarrow high abundances only at large r accretion time < 10⁴⁻⁵yr \rightarrow parents: uniform, daughter: high at inner **Dependence of accretion rate on** spatial distribution of line intensity → Observable by ALMA ?

Chemical Model

Initial Condition Inject mantle molecules into gas

if $\tau_{evap, i} < \tau_{freeze, i}$; $\tau_{evap, i} = v_{0,i}^{-1} \exp(E_{b,i}/kT_d)$ $E_{b,i}$: binding energy $\tau_{freeze, i} = (S\pi a^2 d_g n v_i)^{-1}$ $\sim 10^9 \text{ yr}/n [\text{cm}^{-3}]$

Dust Distribution

(Nomura et al. 2007)

Temperature Profiles

(Nomura et al. 2007)

X-rays & UV radiation fields

(Nomura et al. 2007)

Chemical Model

Chemical reaction network :

209 species, 2203 gas-phase reactions Initial condition: ice evaporation

$CH_4, C_2H_2, C_2H_4, C_2H_6, CO, CO_2, O_2, H_2O, H_2CO, CH_3OH, C_2H_5OH, N_2, NH_3, H_2S, OCS$

(Nomura & Millar 2004)