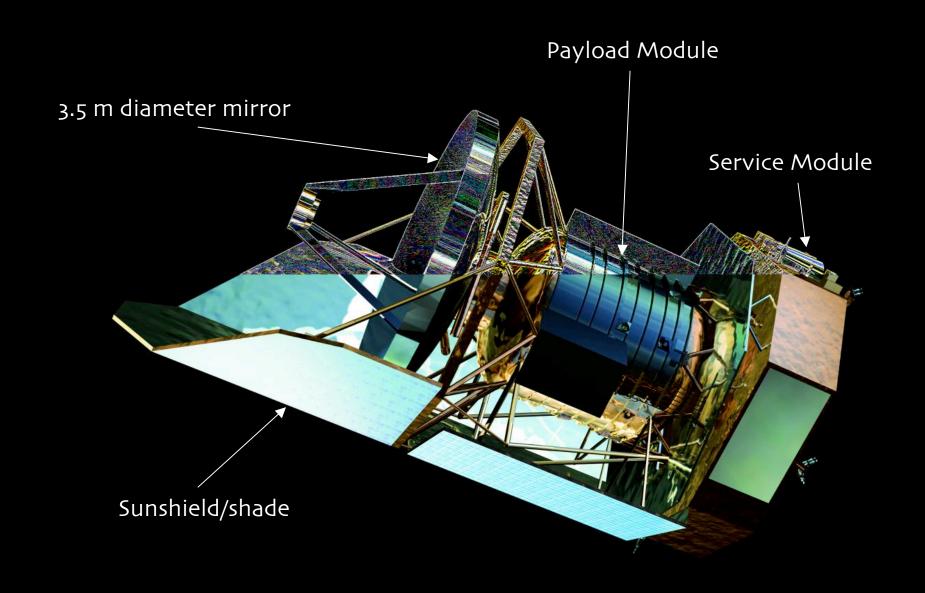


Synergy of ALMA with Herschel

B. Matthews & J. Di Francesco Herzberg Institute of Astrophysics

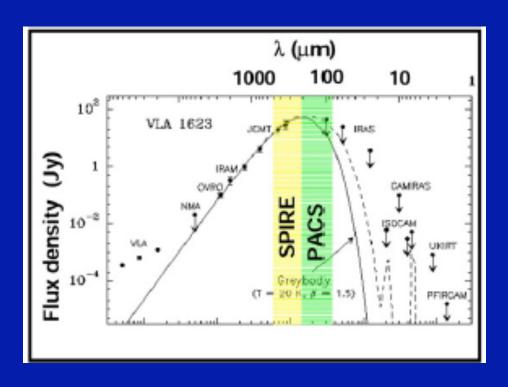
1738-1822

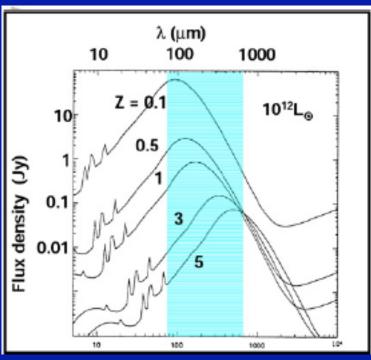

 2006 ESA-ESO Report on ALMA-Herschel synergy available at:

http://www.stecf.org/ coordination/esa_eso/ alma-herschel.php

 This talk is not a rehash of that report

Synergy Punch Line


- Herschel Launch: 2008 (August)
- Herschel start of Operations: 2009 (January)
- Herschel cessation of Operations: 2011?
- ALMA Early Science (16): **2010** (Q3)
- ALMA Full Operations (50): **2012** (Q4)
- Imaging with Herschel will provide the higher frequency "pathfinder" observations for ALMA



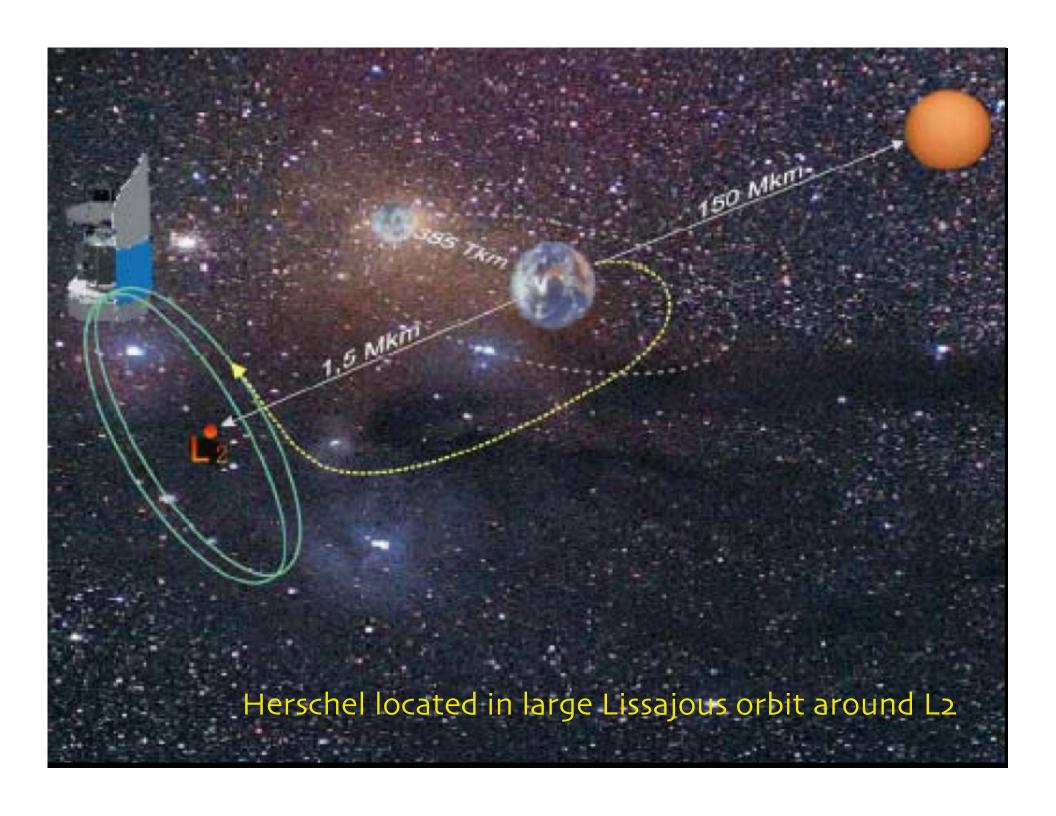
Herschel Space Observatory

Herschel Primary Science Goals

 The cool universe: formation of galaxies and stars, ISM physics/chemistry, solar system objects

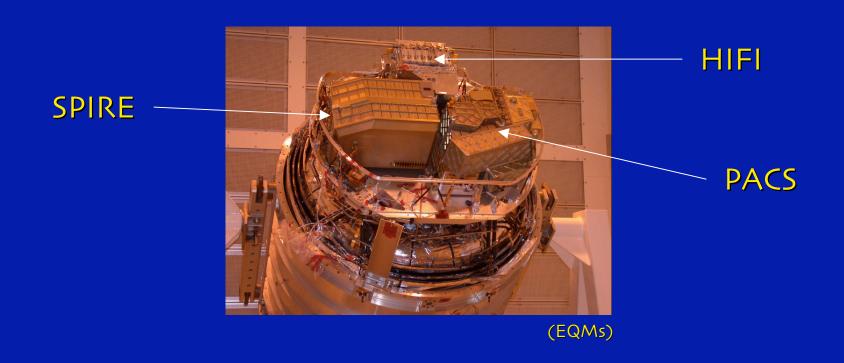
 Herschel's large aperture, low background and no atmospheric attenuation = high sensitivity

Herschel Factoids


- primary diameter = 3.5 m (large!)
- primary material = SiC with a thin reflective Al layer + plasil layer
- primary WFE* < 6%
- telescope temperature < 90 K
- telescope emissivity < 4%
- abs/rel pointing (68%) < 3.7'' / 0.3''
- science instruments = 3
- cryostat lifetime > 3.5 years
- height / width ~ 7.5 m / 4 m
- launch mass = 3200 kg
- power ~ 1500 W

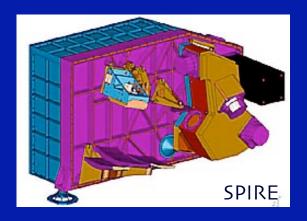
cold side

hot side


The 3 Herschel Instruments

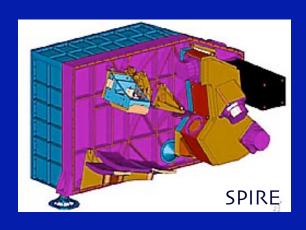
- PACS (Photodetector Array Camera and Spectrometer)
- SPIRE (Spectral and Photometric Imaging REceiver)

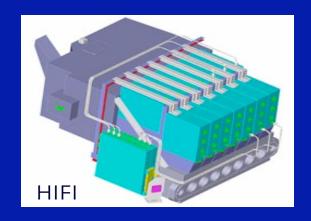
• HIFI (Heterodyne Instrument for the Far-Infrared)



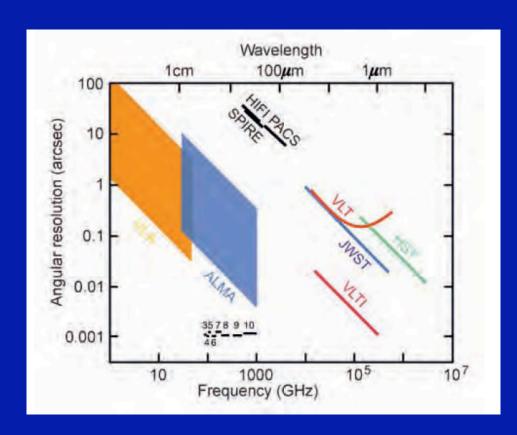
Herschel Instruments

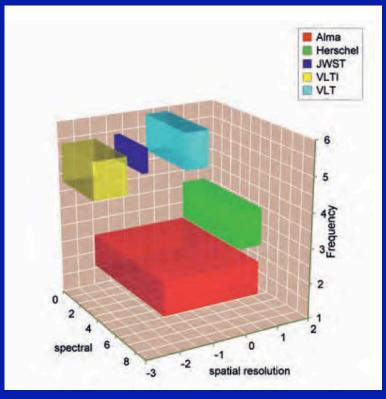
- Photometry/Imaging: 6 bands at 75-520 μm
 - PACS: 1.7' x 3.5' FOV at 75/110 μm and 170 μm
 - SPIRE: 4' x 8' FOV at 250, 363 and 517 μm
 - sensitivity: $\sim 1 \text{ mJy} 1 \sigma 1 \text{ hour (confusion!)}$
 - no chopping! (no spatial filtering of emission)
 - angular resolution: ~15" \times (λ /250 μ m)

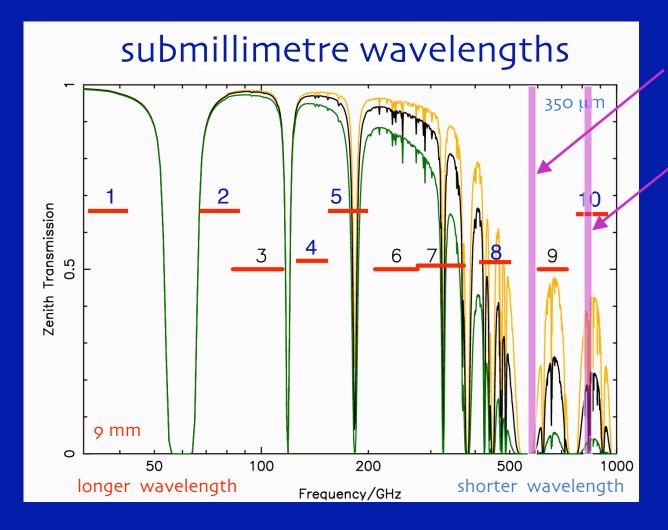




Herschel Instruments


- Spectroscopy: 57 670 μ m range, R = 20 10⁷
 - **PACS**: (*grating*) 0.8' FOV at 57 210 μm,
 R = 1500 4000, 5 x 5 spatial x 16 spectral pixels
 - **SPIRE**: (*FTS*) 2.6′ FOV at 200 670 μm, R = 20 - 100
 - HIFI: (heterodyne) 1-pixel FOV at 157 212 μ m and 240 625 μ m (no gaps), 4000 channels, R = 10⁷

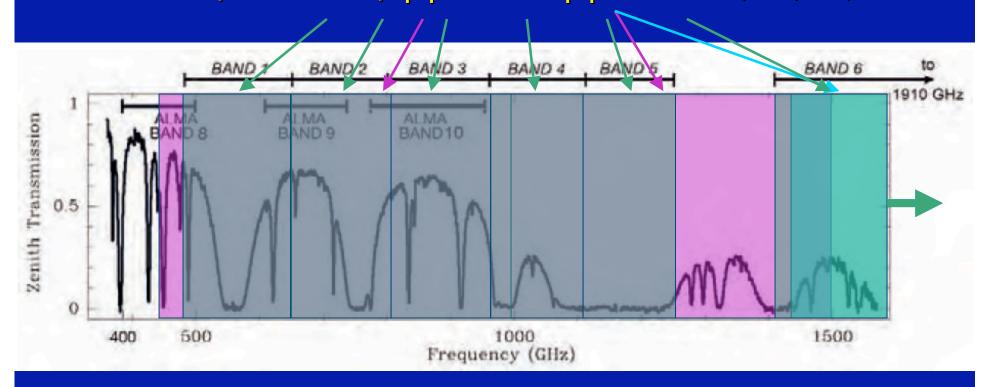



ALMA/Herschel "Discovery Space" Plots

Herschel has wide FOV (mapping), ALMA has high spatial resolution (details)

Comparison of ALMA/Herschel Bands

SPIRE 520 µm


SPIRE 360 µm

(other 1 SPIRE and 3 PACS bands unseen from ground)

Only direct photometric overlap in Band 10!

Comparison of ALMA/Herschel Bands

PACS spectros pjois कि कि (57 µm)

PartialNoveragepfvBhfAll.Noveragesof 9 & 10

Lines of Interest in Overlap Bands

Table 7: Frequencies, Assignments & Estimated Atmospheric Transmission where ALMA and Herschel HIFI Receiver Bands Overlap

Molecule or Atom Transition Energy of Lower Level (K) Frequency (CHz) (R) ALMA Band 8: CS	
CS $J = 10-9$ 106 489.8 37 CI ${}^3P_1{}^3P_0$ 0 492.2 51 NH_2D $J_{KaKc} = 4_{15}{}^4I_4$ 152 494.4 54 150 100	
CI ${}^{3}P_{1}{}^{-3}P_{0}$ 0 492.2 51. NH_D $J_{KMKC} = 4_{13}{}^{-4}I_{14}$ 152 494.4 54. HDO $J_{KMKC} = 2_{11}{}^{-2}O_{11}$ 22 509.3 38. ALMA Band 9: HDO $J_{KMKC} = 2_{11}{}^{-2}O_{2}$ 66 599.9 21. D ₂ O $J_{KMKC} = 3_{05}{}^{-1}I_{11}$ 26 607.4 30. HCO $J = 7.6$ 90 624.4 21. SiH $J_{F} = (3/2)_{1}{}^{-}(1/2)_{1}$ 0 624.9,627.7 24. H ³² CI $J = 1.0$ 0 625.0,625.9 25. DF $J = 1.0$ 0 651.1 51. D ₂ H 661.0 53. D ₂ H 690 49. CO $J = 6.5$ 79 661.0 53. ALMA Band 10: CO $J = 6.5$ 83 691.5 48. ALMA Band 10: CO $J = 7.6$ 116 806.6 39. CI ${}^{3}P_{2}{}^{-2}P_{1}$ 24 809.3 40. H ₂ CO $J_{KMKC} = 12_{0,11}{}^{-1}1_{0,11}$ 228 855.2 48. D ₁₂ CO $J = 8.7$ 148 898.0 40. HDO $J_{KMKC} = 12_{0,11}{}^{-1}1_{0,11}$ 249 896.7 40.	
NH ₂ D $J_{KaKe} = 4_{13} \cdot 4_{14}$ 152 494.4 54. HDO $J_{KaKe} = 1_{10} \cdot 1_{01}$ 22 509.3 38. ALMA Band 9: HDO $J_{KaKe} = 2_{11} \cdot 2_{02}$ 66 599.9 21. D ₂ O $J_{KaKe} = 3_{03} \cdot 1_{11}$ 26 607.4 30. HCO+ $J_{e} = 3_{03} \cdot 1_{11}$ 26 607.4 21. SiH $J_{e} = (3/2)_{1} \cdot (1/2)_{1}$ 0 624.9,627.7 24. H3°Cl $J_{e} = 1_{0} \cdot 0$ 0 625.0,625.9 25. DF $J_{e} = 1_{0} \cdot 0$ 0 651.1 51. D ₂ H+ 690 49. CO $J_{e} = 6.5$ 79 661.0 53. D ₂ H+ 690 49. CO $J_{e} = 6.5$ 83 691.5 48. ALMA Band 10: CO $J_{e} = 7.6$ 116 806.6 39. CI ${}^{3}P_{2} \cdot {}^{2}P_{1}$ 24 809.3 40. H ₂ CO $J_{e} = 8.7$ 148 898.0 40. HDO $J_{KaKe} = 12_{0.11} \cdot 11_{0.11}$ 228 855.2 48. HDO $J_{KaKe} = 1_{0} \cdot 10_{0}$ 0 893.6 40. LiH $J_{e} = 2.1$ 21 887.3 34. H ₂ CO $J_{E} = 1.11 \cdot 0_{00}$ 0 893.6 40.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
ALMA Band 9: HDO $J_{KaKc} = 2_{11} - 2_{02}$ 66 599.9 21. D_2O $J_{KaKc} = 3_{05} - 1_{11}$ 26 607.4 30. HCO+ $J = 7 - 6$ 90 624.4 21. SiH $J_F = (3/2)_1 - (1/2)_1$ 0 624.9,627.7 24. H3°Cl $J = 1 - 0$ 0 625.0,625.9 25. DF $J = 1 - 0$ 0 651.1 51. D2H+ 690 49. CO $J = 6 - 5$ 83 691.5 48. ALMA Band 10: CO $J = 7 - 6$ 116 806.6 39. CI ${}^3P_2 - {}^3P_1$ 24 809.3 40. H2CO $J = 8 - 7$ 148 898.0 40. HDO $J_{KaKc} = 1_{0.11} - 11_{0.11}$ 228 855.2 48. HDO $J_{KaKc} = 1_{11} - 0_{00}$ 0 893.6 40. LiH $J = 2 - 1$ 21 887.3 34. H2CO $J_{KaKc} = 12_{0.11} - 11_{1.10}$ 249 896.7 40.	
ALMA Band 9: HDO $J_{KaKc} = 2_{11} - 2_{02}$ 66 599.9 21. D_2O $J_{KaKc} = 3_{03} - 1_{11}$ 26 607.4 30. HCO+ $J = 7 - 6$ 90 624.4 21. SiH $J_F = (3/2)_1 - (1/2)_1$ 0 624.9,627.7 24. H3°CI $J = 1 - 0$ 0 625.0,625.9 25. DF $J = 1 - 0$ 0 651.1 51. DF $J = 6 - 5$ 79 661.0 53. D_2H^+ 690 49. CO $J = 6 - 5$ 83 691.5 48. ALMA Band 10: CO $J = 7 - 6$ 116 806.6 39. CI ${}^3P_2 - {}^3P_1$ 24 809.3 40. H2CO $J = 8 - 7$ 148 898.0 40. HDO $J_{KaKc} = 1_{01} - 11_{0.01}$ 228 855.2 48. HDO $J_{KaKc} = 1_{11} - 0_{00}$ 0 893.6 40. LiH $J = 2 - 1$ 21 887.3 34. H2CO $J_{KaKc} = 12_{0.11} - 11_{1.10}$ 249 896.7 40.	
H ³⁷ Cl $J = 1-0$ 0 625.0,625.9 25. DF $J = 1-0$ 0 651.1 51. 13CO $J = 6-5$ 79 661.0 53. D ₂ H ⁺ 690 49. CO $J = 6-5$ 83 691.5 48. ALMA Band 10: CO $J = 7-6$ 116 806.6 39. CI ${}^{3}P_{2}{}^{-3}P_{1}$ 24 809.3 40. H ₂ CO $J_{KaKc} = 12_{0,11}{}^{-1}11_{0,11}$ 228 855.2 48. 13CO $J = 8-7$ 148 898.0 40. HDO $J_{KaKc} = 1_{11}{}^{-0}0_{00}$ 0 893.6 40. LiH $J = 2-1$ 21 887.3 34. H ₂ CO $J_{KaKc} = 12_{1,11}{}^{-1}11_{1,10}$ 249 896.7 40.	
H ³⁷ Cl $J = 1-0$ 0 625.0,625.9 25. DF $J = 1-0$ 0 651.1 51. 13CO $J = 6-5$ 79 661.0 53. D ₂ H ⁺ 690 49. CO $J = 6-5$ 83 691.5 48. ALMA Band 10: CO $J = 7-6$ 116 806.6 39. CI ${}^{3}P_{2}{}^{-3}P_{1}$ 24 809.3 40. H ₂ CO $J_{KaKc} = 12_{0,11}{}^{-1}11_{0,11}$ 228 855.2 48. 13CO $J = 8-7$ 148 898.0 40. HDO $J_{KaKc} = 1_{11}{}^{-0}0_{00}$ 0 893.6 40. LiH $J = 2-1$ 21 887.3 34. H ₂ CO $J_{KaKc} = 12_{1,11}{}^{-1}11_{1,10}$ 249 896.7 40.	neat-n
H ³⁷ Cl $J = 1-0$ 0 625.0,625.9 25. DF $J = 1-0$ 0 651.1 51. D ₂ H ⁺ 690 49. CO $J = 6-5$ 83 691.5 48. ALMA Band 10: CO $J = 7-6$ 116 806.6 39. CI ${}^{3}P_{2}{}^{-3}P_{1}$ 24 809.3 40. H ₂ CO $J = 8-7$ 148 898.0 40. HDO $J_{KaKc} = 12_{0.11}{}^{-1}11_{0.11}$ 228 887.3 34. H ₂ CO $J_{KaKc} = 12_{0.11}{}^{-1}11_{0.10}$ 249 896.7 40.	
H ³⁷ Cl $J = 1-0$ 0 625.0,625.9 25. DF $J = 1-0$ 0 651.1 51. D ₂ H ⁺ 690 49. CO $J = 6-5$ 83 691.5 48. ALMA Band 10: CO $J = 7-6$ 116 806.6 39. CI ${}^{3}P_{2}{}^{-3}P_{1}$ 24 809.3 40. H ₂ CO $J = 8-7$ 148 898.0 40. HDO $J_{KaKc} = 12_{0.11}{}^{-1}11_{0.11}$ 228 887.3 34. H ₂ CO $J_{KaKc} = 12_{0.11}{}^{-1}11_{0.10}$ 249 896.7 40.	linocl
DF $J = 1-0$ 0 651.1 51. 13CO $J = 6-5$ 79 661.0 53. D_2H^+ 690 49. CO $J = 6-5$ 83 691.5 48. ALMA Band 10: CO $J = 7-6$ 116 806.6 39. CI ${}^{3}P_{2}{}^{-3}P_{1}$ 24 809.3 40. $H_{2}CO$ $J_{Rakc} = 12_{0.11}{}^{-1}1_{0.11}$ 228 855.2 48. 13CO $J = 8-7$ 148 898.0 40. HDO $J_{Rakc} = 1_{11}{}^{-0}0_{0}$ 0 893.6 40. LiH $J = 2-1$ 21 887.3 34. $H_{2}CO$ $J_{Rakc} = 12_{1.11}{}^{-1}1_{1.10}$ 249 896.7 40.	111162;
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CO $J = 6-5$ 83 691.5 48. ALMA Band 10: CO $J = 7-6$ 116 806.6 39. CI ${}^{3}P_{2}{}^{-3}P_{1}$ 24 809.3 40. $H_{2}CO$ $J_{KaKc} = 12_{0,11}{}^{-1}11_{0,11}$ 228 855.2 48. ${}^{13}CO$ $J = 8-7$ 148 898.0 40. HDO $J_{KaKc} = 1_{11}{}^{-0}0_{00}$ 0 893.6 40. LiH $J = 2-1$ 21 887.3 34. $H_{2}CO$ $J_{KaKc} = 12_{1,11}{}^{-1}11_{1,10}$ 249 896.7 40.	
ALMA Band 10: CO $J = 7-6$ 116 806.6 39. CI ${}^{3}P_{2}{}^{3}P_{1}$ 24 809.3 40. $H_{2}CO$ $J_{KaKc} = 12_{0,11}{}^{-}11_{0,11}$ 228 855.2 48. ${}^{13}CO$ $J = 8-7$ 148 898.0 40. HDO $J_{KaKc} = 1_{11}{}^{-}0_{00}$ 0 893.6 40. LiH $J = 2-1$ 21 887.3 34. $H_{2}CO$ $J_{KaKc} = 12_{1,11}{}^{-}11_{1,10}$ 249 896.7 40.	
CO $J = 7-6$ 116 806.6 39.1 CI ${}^{3}P_{2}{}^{-3}P_{1}$ 24 809.3 40.1 H ₂ CO $J_{KaKc} = 12_{0,11}{}^{-1}11_{0,11}$ 228 855.2 48.1 HDO $J_{KaKc} = 1_{11}{}^{-0}00$ 0 893.6 40.1 LiH $J = 2-1$ 21 887.3 34.1 H ₂ CO $J_{KaKc} = 12_{1,11}{}^{-1}11_{1,10}$ 249 896.7 40.1	
CI $^{3}P_{2}^{-3}P_{1}$ 24 809.3 40. $H_{2}CO$ $J_{KaKe} = 12_{0,11}^{-1}11_{0,11}$ 228 855.2 48. ^{13}CO $J = 8-7$ 148 898.0 40. HDO $J_{KaKe} = 1_{11}^{-1}0_{00}$ 0 893.6 40. LiH $J = 2-1$ 21 887.3 34. $H_{2}CO$ $J_{KaKe} = 12_{1,11}^{-1}11_{1,10}$ 249 896.7 40.	
H_2CO $J_{KaKc} = 12_{0,11} - 11_{0,11}$ 228 855.2 48. ^{13}CO $J = 8-7$ 148 898.0 40. ^{14}DO $J_{KaKc} = 1_{11} - 0_{00}$ 0 893.6 40. ^{14}LiH $J = 2-1$ 21 887.3 34. ^{14}LiH J_{CO} $J_{KaKc} = 12_{1,11} - 11_{1,10}$ 249 896.7 40.	
$_{13}^{13}$ CO $_{12}^{13}$ CO $_{13}^{13}$ CO $_{148}^{13}$ 898.0 40.0 HDO $_{13}^{13}$ CO $_{11}^{13}$ CO $_{11}$	
HDO $J_{KaKc} = 1_{11} - 0_{00}$ 0 893.6 40. LiH $J = 2 - 1$ 21 887.3 34. H_2 CO $J_{KaKc} = 12_{1,11} - 11_{1,10}$ 249 896.7 40.	
LiH $J = 2-1$ 21 887.3 34. H_2 CO $J_{KaKc} = 12_{1,11} - 11_{1,10}$ 249 896.7 40.	
H_2CO $J_{KaKc} = 12_{1,11} - 11_{1,10}$ 249 896.7 40.	
2 10000 1,10	
D_2O $J_{KaKe} = 2_{12} - 1_{01}$ 17 897.9 40.	

Herschel is a Pathfinder for ALMA

- SPIRE and PACS offer wide-field photometric mapping:
 - will provide large, confusion-limited maps in which many objects will be detected at "low" spatial resolution
- SPIRE and PACS offer moderate-FOV spectral mapping:
- will provide images of lines at low- to moderate spectral
 - resolution
- HIFI offers single-pixel observations:
 - will provide ground-breaking work of new spectral territory at high spectral resolution
- Herschel data will provide source lists for high spatial resolution follow-up with ALMA

Herschel Timeline: Telescope

- 2008 August LAUNCH
- travel to L2, cooldown
- commissioning & performance verification
- science demonstration + workshop
- routine science operations (36 months+):
 - ~1000 days of available time (2009-2011)
 - ~1/3 share is Guaranteed Time (GT) to instrument teams
 - ~2/3 share is Open Time (OT) to world community
- three "Calls for Proposals" (Cycles) foreseen:
 - one for Key Projects (>100 hrs), GT & OT
 - two for regular programs, GT & OT
 - in every cycle, GT obs'ns made before OT obs'ns

Herschel Timeline: Data

- AO issued as late as possible, to maximize timeliness of scientific programmes and knowledge of instruments
- 2007 Feb 1: AO for KP proposals issued
- 2007 Apr 5: deadline for GT KP proposals

present

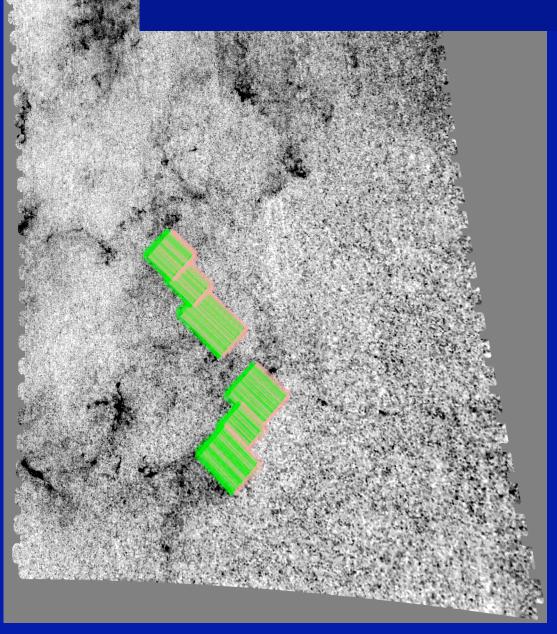
- 2007 Jul 5: selection/announcement of GT KP projects
- 2007 Oct 25: deadline for OT KP proposals
- 2008 Feb 28: selection/announcement of OT KP projects
- 2008 Feb 28: AO for regular GT proposals
- 2008 Apr 3: deadline for GT1 proposals
- 2008 Jun 5: selection/announcement for GT1 projects
- 2008 August: LAUNCH

Relevant Herschel GT Key Projects

SPIRE/PACS "Herschel Gould Belt Survey":
 (PI's: P. Andre & P. Saraceno)

 SPIRE/PACS/HIFI "Stellar Disk Evolution" (PI: G. Olafsson)

 HIFI "Water In Star-forming environments with Herschel (WISH)"


(PI: E. van Dishoeck)

Herschel Gould Belt Survey

extinction map of Orion A & B

Herschel Gould Belt Survey

extinction map of Orion A & B

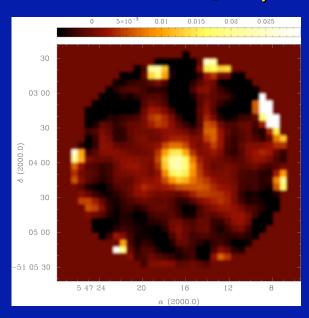
PACS (70/170 µm)
and SPIRE
parallel mode
AORs

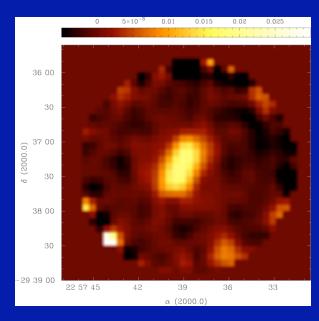
37 hours total
good match to
Spitzer coverage

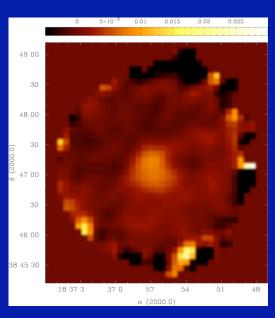
Herschel Gould Belt Survey

extinction map of Orion A & B

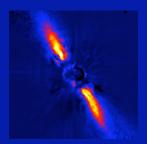
PACS only AORs (110/170 µm)


29 hours total


Relevant Herschel GT Key Projects

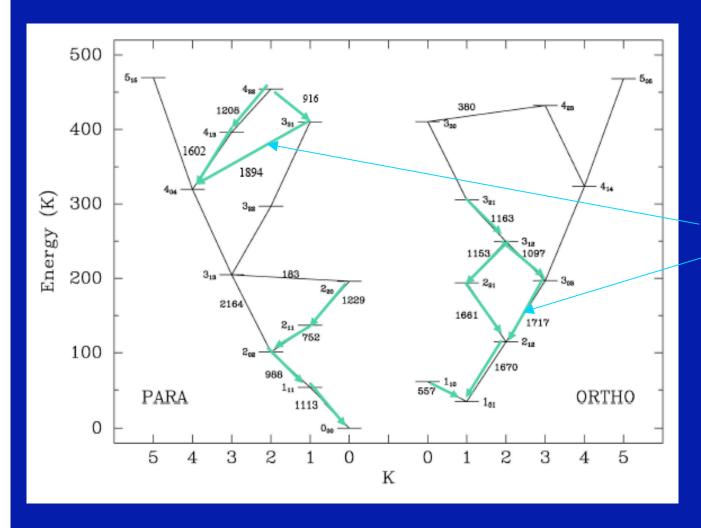

- SPIRE/PACS "Herschel Gould Belt Survey":
 - map 16 molecular clouds < 500 pc with SPIRE + PACS in parallel mode, for 145 deg² in 272 hrs
 - follow-up high A_v regions (55 deg²) with PACS, in 195 hrs
 - total = 467 hrs (depends on overheads)
 - will be sensitive at 10 σ to cores > 0.2-0.3 M_{sun} at Orion, lower mass limit for closer clouds
 - identify all embedded SF locations, test mass f'n slope for differences with cloud environment

Stellar Disk Evolution


850 μm SCUBA obs of debris disks

Beta Pictoris

Fomalhaut


Vega

Relevant Herschel GT Key Projects

- SPIRE/PACS "Stellar Disk Evolution":
 - map 6 extended debris disks with SPIRE + PACS (Vega, Fomalhaut, ϵ Eri, β Pic, AU Mic, τ Cet)
 - 19 hrs of 70/170 μ m PACS obs'ns and 6 hrs of SPIRE obs'ns (i.e., to the confusion limit)
 - probe line emission towards these with PACS,
 SPIRE and HIFI, for solid state features
 - PACS: 55 210 μm (14 hrs); (O I and forsterite)
 - SPIRE: 200 670 μm (12 hrs)
 - HIFI: H_2O at 557 GHz, NH_3 at 572 GHz, CI at 492 GHz (20 hrs)

Water in Disks

H₂O lines observable with HIFI

H₂O is a major unknown factor in interstellar chemistry, Herschel will observe it well

Relevant Herschel GT Key Projects

- HIFI "Water In Starforming environments with Herschel (WISH)"
 - a 499 hr program of cores, protostars and disks
 - use HIFI to observe H₂O, H₂¹⁸O, H₂¹⁷O, O, OH lines, in disks test for vertical mixing between cold midplane, warm interiors and outer PDRs
 - H₂O is the main ice reservoir, drives chemistry

92 hr disk program: 3 mK rms for
 557 GHz line, and 10 mK rms for
 1113 GHz line of H₂O for TW Hya,
 DM Tau, LkCa 15, and MWC 480

Major Opportunities for Disks!

- These are the only disk-related Guaranteed Time Key
 Projects that have been awarded time by the HOTAC
- There is a lot of ground left to cover in OT: low-mass disks, nearby stars, moving groups, disk evolution, etc.
- OT Key Project Deadline coming up fast!

Summary

- Herschel will probe disks over a relatively unexplored regime of the EM spectrum at high sensitivities
- data will provide important pathfinder info for ALMA
- 2/3 observing time is available to the world community,
 2009-2011, so use Herschel while it is available!
- For more info see http://www.rssd.esa.int/herschel

