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Class O protostars...
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The quest for Class OISk

- a hon-exhaustive list 0.25

Keene & Masson (1990): Detefs i
baselines in the embedded Sk
Looney et al, (2000, 2003); BIIIJN-S
multiplicity, and analytic fitsjks i
fast processing of material (e 010k
Hogerheijde+ (2000, 2001); RN
envelopes, inferring the prefEryyIs y
Brown et al. (2000); JCMT+CS Y.l _
ProtOStars 0N DasEliNes Al /I Y

radius) disks. .
uv distance (kA)
H avey et al , (2003*) I R AM Pd FiG. 3.—The observed 2.73 mm visibilities. The dashed line shows the visi-

bilities resulting from an envelope with 0.29 Jy total flux and with a volume
8335 . emissivity ocr ™2 The solid line shows the visibilities resulting from a similar
envelope with a flux of 0.14 Jy plus a compact Gaussian source with a flux of
0.15 Jy (for a total flux of 0.29 Jy) and a half-power radius of 074. It is obvious
that the two-component model fits the data much better than a simple power-
law source.



Outline

. Identification of pre- and protostellaf Coresifiomlaroge
scale Spitzer+SCUBA maps:

. Mid-infrared emission frem of low-mass pretestars
and the implications for their envelepe structures.

. Disks around Class 0O protostars from high angular
resolution submillimeter (SMA) continuuum
observations.

. Toward less embedded Class | objects
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NGC1333 . | Green colors reflect
. ' emission from H, rotational
transitions in the 4.5 um
band - probing shocked gas
of 500-1000 K. Red is PAH
emission in the 8 um band.
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Spitzer/IRAC from c2d (Jgrgensen et al. 2006) and GTO (Gutermuth et al. 2007)
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Spitze‘r/IRAC from c2d (Jagrgensen et al. 2006) with SCUBA map (yellow contours; Kirk et al. 2006)




Comparison; SCUBA+Spitzer apSs=—
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Distribution of MIPS sources

around centers of SCUBA
cores - with [3.6]-[4.5] > 1.0.

MIPS-24 micron sources
are concentrated toward
center of SCUBA cores...

...with most of those
within 10-15” of the
peaks having red [3.6]-
[4.5] colors.

Jargensen et al. 2007, ApJ, 656, 293




Comparison: SCUBA+Spit |

Of 72 SCUBA cores, 40 have embedded protostars
within 15” (3750 AU). Pre- and protostellartime
scales similar.

Little dispersal of protostars (v ~ 0.1 km/s = C;).
Bondi-Hoyle accretion net applicable

“Current” star formation efficiency of 10-15%. No
significant differences between NGC1333 and other
parts of Perseus.

Comparison between SCUBA and Spitzer data allow

us to build unbiased samples of embedded protostars
and most Class 0 sources (including those previously
Known) are detected at wavelengths as short as

3.6 1m.




SEDs of low-mass protost'
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We can now start characterizing even the very deeply
embedded protostars at mid-IR wavelengths.




Outline

. |ldentification of pre- and protostellaf cores;from'large
scale Spitzer+SCUBA maps.

. Mid-infrared emission; frem of low-mass) preiesiars
and the implications for thelr envelepe structures.

. Disks around Class 0O protostars from high angular
resolution submillimeter (SMA) continuuum
observations.

. Toward less embedded Class | objects
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Framework
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Single-dish ——— Envelope large scale ~0% LEBe

submm/FIR dust physical structure > l
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Envelope structure
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e SED, images

e Distance .
- Temperature profile

- Model images, SED

® D, Ny (Or Typg), Rout

See Jgrgensen et al. (2002), Schoier et al. (2002), Shirley et al. (2002)




| ow-mass protostars™

~ 20,000 AU (100") ~ 200 AU (17)

e Densities ranging from 10* cm™ to 107-108 cm3 (H,)
e Temperatures ranging from ~10 K to a few hundred K.




Envelope structure

e Trying to fit Spitzer/IRS data for IRAS 16293-214,__

—

IRAS16293-2422 mid-IR Is not

well-repreduced withi standard

envelope model extending to

25 AU scales... but we know it

Upper limit IS a binary with a separation of
about 800 AU.

Deteﬁction

IRAS16293-2422

Dashed line: Best fit model of Schoier et al.
(2002). Inner radius assumed to be radius
where T, = 300 K.

Blue line: model with r, = 600 AU (T4, = 65 K)

Spitzer: c2d/IRS Jargensen et al. 2005, ApJ , 631, L77




Envelope structure

Central source of heating

Inner radius

Density profile “type” (e.d., m = ng(r/rg) =2)
Dust properties

SED, images
Distance

- Temperature profile
P, Ng (OF Ty00), Rout . Model images, SED

See Jgrgensen et al. (2002), Schoier et al. (2002), Shirley et al. (2002)




Envelope structure
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e Do the envelopes extend all the way to the srr_lmgll_e,s [eX55

| e R e IAside 600"AU the envelope
has to be “cleanedeiimaternal:
othenwise envelope severely:
optically thick at mid-IR
wavelengths; no emission
escapes from the central
source(s).

DEC offset ["]

I
)

For comparison the binary sep.
(radius) is 400 AU (2.5”).

| Schoier et al. (2004)
. i i . 1 . i i . 1

10 5 Dashed I|ne Best flt model of Sch0|er et aI
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We need data from not just (sub)mm obs but addltlonal

constraints from, e.g., mid-IR (Spitzer) observations are

important...
Spltzer C2d/|ho Uylgbllgbll “wi Ul VU, l_\P\J y UVl LT 1




—

Two other low-mass protostars::

A

R = 9 AU (250 K) - - --
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Inner cavities of ~100 AU sizes present to let of “enough” mid-IR
emission escape. This is not new: Known already to be a problem for
less embedded Class | objects when explaining IRAS measurements

(e.g., Adams et al. 1987, Myers et al. 1987)



Outline

. |ldentification of pre- and protostellaf cores;from'large
scale Spitzer+SCUBA maps.

. Mid-infrared emission frem of low-mass pretestars
and the implications for their envelepe structures.

. Disks around Class 0 protostars from high angular
resolution submillimeter (SMA) continuuum
observations.

. Toward less embedded Class | objects

Jes Jargensen (AIfA, Bonn), Charlottesville, June 22, 2007




Protostellar Submillimeter Arra)
Campaign “PROSAC”

Jargensen (PI)
Bourke, Di Francesco, Lee, Myers, Ohashi,
Schoier, Takakuwa, van Dishoeck, Wilner, Zhang

Line + continuum survey. (230/345 GHz) oft a sample 6f'8 deeply.
embedded (Class 0) protostars. Half fromiPerseus and halfimore

Isolated cores (including one from Taurus).

3 spectral setups per source: CO, CS, SO, HCO*, H,CO, CH,0OH,
SIO, ... transitions (and isotopes)

20 tracks allocated (and observed) Nov. 2004 - Jan. 2006.

“Large scale” envelope structure of each source from detailed line
and continuum rad. transf. models (Jgrgensen et al. 2002; 2004)

Follow-up program(s) aiming to build comparable sample of Class
| sources currently ongoing at the SMA.

Jargensen et al. 2007, ApJ, 659, 974
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NGC1333-IRAS2A: 850 umd

SCUBA 850 pm SMA 850M
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Jargensen et al. 2005, ApJ, 632, 973
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NGC1333-IRAS2A: 850 jim dUSteol
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...the SMA resolves the warm dust in the inner envelope and the (300
AU diameter) circumstellar disk. )

Jargensen et al. 2005, ApJ, 632, 973
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Dust continuum fits for 8 Class*O'pI Ol€

Disk sizes of < 50 AU - 300/ AU. (radits)r

Masses of 0.01-0.5 M, (meduloe uncertain dust
properties etc.) - compared to envelope masses of

= Note that objects with lower M /Mg eione A0S
are those with the least collimated outflows

Comparison between 230 and 345 GHz data suggest
dust opacity law, x, ~ vAwith = 1.0. Grain growth
such as in more evolved disks around Class ||
protostars? Or just reflecting that we don’t
understand dust?




Adding it all together

NGC1333-IRASZA

Spitzer

JCMT/APEX
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Simple “0D” disk'mode
(Butner et al. 1994).

Inner radius appears
most important for

shape of short (IRAC)
wavelength SED.

L~ 1 and disk mass ~
0.1 Mg (Size constr. by
SMA obs.)




Outline

. Identification of pre- and pretesielliar cores from large
scale Spitzer+SCUBA maps.

. Mid-infrared emission frem of low-mass pretestars
and the implications for their envelepe structures.

. Disks around Class 0O protostars from high angular
resolution submillimeter (SMA) continuuum
observations.

. Toward less embedded Class | objects
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Example: L1489-1RS

Class | YSO (3.7 Lg; Ty =
240 K) in Taurus.

L arge scale infalling and
rotating envelope
constrained by single-dish
observations and 2D
radiative transfer (Brinch et
al. 2007).

Mapped in HCO* J = 3-2
and continuum at
subarcsecond resolution
with the SMA.

Central disk added to Ao (arcsec)

envelope model and _ ;

(Brinch et al., submitted). SMA HC_O+ 3-2 emission (contours; Brinch et
al. submitted).

(arcsec)

AS




Continuum reveal central
disk source - and test
envelope structure on
small scales.

HCO* 3-2 reveal velocity

field including infall +
rotation in central
Keplerian disk.

Best fit L1489 IRS model:
M., =9e-2 Mg,
Mo = 4€-3 Mg
M., = 1.4 Mg
Similar observations for an
additional 8 Class | objects
INn progress...

Brinch et al., A&A, submitted




SySiematcsuivey or
largesamplesoi
embedded YSOs in
diffierng regiens,

evolutionary stages,
etc. could constrain

theoretical models for
protostellar evolution.

Toy-model* for the evolution of 1 Mg core inspired by the work of Hueso &

Guillot (2005) with simple parameterizations of envelope and disk
accretion rates.

Lanyresemblance to actual YSOs is purely coincidental.
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Where do we (need 10y U0 RexEr -

Interferometric Studies: | : ,
% Dynamics of protostellar envelopes/outflows, envelepe c'ldissipation_
% Chemistry (radial variations in abundances, shocks)

% More evolved YSOs (direct evidence for Keplerian rotation: in disks)

Large-scale mapping suveys:
< Comparison across clouds/cloud samples; relation to environment
% Gould Belt surveys (Spitzer, JCMT, Herschel)

Underlying physics, tools:

% We need to understand dust (better) to relate the emission across
wavelengths.

4 Also issues for identification of lines, molecular data etc.




Conclusions

< Large scale submillimeter and mid-infirared surveyssare buildine
large sample of embedded protestars;and characterizing their

distribution and physical properties from hundred AU to;parsec
scales.

4 Deeply embedded protostars posses circumstellar disks with
significant masses (~0.1 M) and sizes (~100 AU). The physical

structure of the inner envelope reflects the formation of these
disks.

4 A detailed framework is in place/being continuously developed
to perform the full dust and line radiative transfer necessary to
interpret coming observations of low-mass protostars, e.g., from

ALMA. Still, there are things that we need to understand better -
e.g., the properties of dust.




