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Sites of Massive Star Formation

(Plume et al. 1997; Shirley et al. 2003; Rathbone et al. 2005; Yonekura et al. 2005)

= Massive stars form in
gas clumps seen in
mm continuum or lines,
or in IR absorption
(IRDCs)

= Typical properties:
= M~10°-10* Mg
= R~1pc
mX~1gcm—?
s 0~ few km s’

Spltzer/IRAC (left) and Spltzer/MIPS O Properties very similar
(right), Rathbone et al. (2005) to young riCh Clusters




Amplitude (Jy)

Massive Cores
Largest cores in clumps: M ~ SO
100 Mg, R~ 0.1 pc

Cores have powerlaw density
profiles, index k; = 1.5

Some are starless
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Core in IRDC 18223-3,

Spitzer/IRAC (color) and PdBI 93

GHz continuum (contours),

Core density profile in 3 Beuther et al. (2005, 2007)
wavelengths, Beuther et al. (2007)

UV Distance (klam)



Clue |: The Core Mass Function

(Motte, Andre, & Neri 1998, Johnstone et al. 2001,
Reid & Wilson 2005, 2006, Lombardi et al. 2006, Alves et al. 2007)

The core MF Is
similar to the stellar
IMF, but shifted to
higher mass a factor
of a few

Correspondence
suggests a 1 to 1
mapping from core
mass to star mass

Core mass function in Pipe Nebula : 10 .
(red) vs. stellar IMF (gray) (Alves, Mass (Myun)
Lombardi, & Lada 2007)
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Clue II:
Core Spatial Dlstrlbutlons

starless cores

radius [pc]
Fraction of stars vs. radius for stars of low

mass (blue) and high mass (red) stars in
the ONC (Hillenbrand & Hartmann 1998) -2.0 —1& (—M1£s —og-iorg-O(Mo%s 1.

Core mass function for inner
For both stars and cores, the mass e T i

function is position-independent at Oph, Stanke et al. (2006)
low mass, but high mass objects are
only in cluster / clump centers




The Core Accretion Model

Is that cores are the progenitors of individual
stars or star systems. A collapsing core is
also, therefore, the structure responsible for
creating protostellar disks.




The Core Accretion Model




Simulations of Massive Cores

Start with observed massive core properties: M
=100 Mg, r= 0.1 pc, virialized turbulence (o =
few km/s), centrally condensed with k; = 1.5

Use the Orion AMR gravity-radiation-hydro code
(Krumholz, Klein, & McKee 2007a, ApJ, 656, 959, and KKM, 2007b, ApJS,
in press, astro-ph/0611003)
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Simulation of a Massive Core

= Simulation of 100 Mg, 0.1 pc turbulent core

= LHS shows X in whole core, RHS shows 2000 AU
region around most massive star
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Massive Disk Properties
My, / M. = 0.2 — 0.5,
i ~ 1000 AU

Global Gl creates strong
m = 1 spiral pattern

Spiral waves drive rapid

accretion; o ¢ ~ 1

Disks reach Q ~ 1, form
stellar fragments

Small fragments migrate
INn; some become twins
via mass transfer (krumholz

& VINTEEse A0 Surface density (upper) and Toomre Q (lower)




Aside: Radiative Transfer Matters!
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Column density with and
without RT, for identical times
and initial conditions

With RT: 3 fragments,
Mgis / M« ~ 0.5, inner
disk column density ~
1000 g cm—2

Without RT: more than
[ fragments, Mg, / M*
~ 0.15, inner disk
column density ~ 100 g
cm—2

Conclusion: simulations
without RT get incorrect
bulk properties of
massive disks




Understanding Massive Disks

(Kratter & Matzner 2006, Kratter, Matzner & Krumholz, 2007, in preparation)

Accretion rate onto star + diskis ~ o3/ G

~ 10=3 Mg / yr in a massive core, but max
transfer rate through a stable disk (a <<

1)is~c2/G~5x10>Mg/yratT =100

K

Core accretes faster than stable disk can
process = massive, unstable disks

Study disk evolution using semi-analytic
core model, including accretion, radiative
heating, parameterized treatment of
angular momentum transport




Model Disk Evolution

The plot shows
“3x10* yrs - the evolution of
i disks in 1 Mg
A5x10°yrs =8 N and 15 Mg
‘ cores.

o

5x 103 yrs

Prediction:
My / M-
Increases with
M.or M_e;
Toomre Q
decreases with

4 yrs

1x 105 yIs

0.1 : 0. ] : : M. or M

core




Variation in Disk Properties
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The plot shows Q
as a function of
core mass and

the evolutionary
time of the system.
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Prediction:
incidence of spiral
structure and disk
fragmentation
both increase with
M_. . or M.
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A proper theorist attitude toward observations




General Considerations on
Massive Disk Observations

(Krumholz, Klein, & McKee, 2007c, ApJ, in press, arXiv:0705.0536)
Density > 1079 cm=3 = all species in LTE

T > 50— 100 K = can use high temp.
lines to avoid envelope contamination

Inner disk column density ~ 10° g cm= =
dust optical depth ~ 1 at 100 GHz

m Bad: kinematics in central few hundred AU
impossible with ALMA (need EVLA)

m Good: spiral arms have optical depth ~ 1 in
dust / strong lines, very easy to do with ALMA




Predictions from Simulations

Solve transfer

equation on rays
through adaptive grid =
Include molecular

line and dust

continuum processes
at radio and sub-mm

Model ALMA, EVLA
performance

Simulations must include radiative transfer to make
realistic predictions

Caveats: chemistry, outflows




ALMA: Rotating m = 1 Spiral

10

-1500
-1500 ~=1000 -3500 0 500
x (AU)

Simulated 1000 s / pointing ALMA observation of disk at 0.5 kpc in CH,CN
220.7472 GHz, T, = 69 K (KKM 2007¢c, ApJ, in press)




EVLA: Offset Keplerian Rotation

Log JTg dv (K km s7")
2.50 3.00 3.50

-3500
-250 -125 -500 -250

Simulated 24 hr / pointing EVLA observation of disk at 0.5 kpc in NH,(8,8)
hyperfine line, 26.5910 GHz, T, = 687 K (KKM, 2007c, ApJ, in press)
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Competitive Accretion /
Collision Model

There is no direct core to star mapping

Gas always fragments to Jeans mass at T
~ 10 K; all stars born small, ~ 0.1 — 0.5 Mg

Close encounters between protostars
common, especially for massive stars

Requires that gas clumps undergo global
collapse, turn into stars in a time of order
tff (Krumholz, McKee, & Klein, 2005, Nature, 438, 332)




Disks in the Competitive
Accretion / CoII|S|on I\/Iodel

In CA model, almost
all massive stars
have close
encounters that
truncate their disks

Disks can grow back,
but this takes a while

CA prediction: a non-
trivial fraction of
massive stars should
be close to diskless

<+ All stars_

10 100 1000 104 10
closest approach (au
Distribution of encounter distances
in @ competitive accretion simulation
(Bonnell et al. 2003)




Looking for Global Collapse
Using the Star Formation Rate

(Krumholz & Tan, 2007, ApJ, 654, 304)

Compute ratio of SFR A oooure
to free-fall time in TR L.
observed objects of
varying densities (g

No CA

Gao & Solomon 2004, Wu et al. 0.010 -CO(1-0)
2005, Rathborne et al. 20006)

Compute ratio from
simulations with and

without Competitive Ratio of free-fall time to depletion time in gas
. clouds of varying density
accretion

Can do this test much better with ALMA!




Summary

The core accretion model predicts

= Massive protostellar disks have r ~ 1000 AU,
m~ M./ 2, m = 1 spirals, v offset ~ few km s~

m Mo /M., 1y, Spiral mode strength,
fragmentation all increase with M.

CA models predict a diskless population,
and i; ~ t;., In protocluster gas

ALMA and EVLA can test these
predictions in reasonable integration times

= ALMA is good for fast mapping of outer disks
s EVLA Is slower, but can see inner disks
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Finally'and mostyr p@rtantly, thanks to the

together this meeting...

organizers for putting

...and thanks to the audience for showing
up at 9 AM on a Saturday morning!




