

Accretion and Mixing in Protostellar Disks: Probing the Underlying Processes with ALMA

Neal Turner JPL/Caltech

Outline

- Current Picture:
 - **1. Gravitational Instability.**
 - 2. Magneto-Centrifugal Winds.
 - 3. Magneto-Rotational Turbulence.
- Prospects with ALMA.

1. Gravitational Instability

1. Gravitational Instability

1. Gravitational Instability

Small disturbances grow if

If cooling time < orbital period, instability leads to collapse.

With slower cooling, instability leads to sustained accretion.

Mejia et al. 2005

2. Magneto-Centrifugal Winds

Conditions for operation?

Wardle & Koenigl 1993

3. Magneto-Rotational Turbulence

Balbus & Hawley 1991

3. Magneto-Rotational Turbulence

MRI turbulence requires

Sano & Stone 2002b

FIG. 14.—Saturation level of the magnetic energy as a function of the magnetic Reynolds number Re_{M0} for zero net flux B_z models ($\beta_0 = 3200$). Open circles denote the models with only the ohmic dissipation ($X_0 = 0$), and the other symbols are including also the Hall effect ($X_0 = 2, 4, 100, \text{ and } 1000$).

Magnetic Stresses Can Occur in the Dead Zone

Ideal MHD

Resistive MHD with Ionization Chemistry

Turner et al. 2007

Do multiple A.M. transfer mechanisms coexist?

Mass Transport

Crystalline forsterite grain from Comet Wild 2

Zolensky et al. 2006

• **G.I.** – little direct mixing, but shock heating => convection => mixing.

- **G.I.** little direct mixing, but shock heating => convection => mixing.
- **Disk winds** little mixing. Solids exchanged between disk & wind?

- **G.I.** little direct mixing, but shock heating => convection => mixing.
- **Disk winds** little mixing. Solids exchanged between disk & wind?
- **MRI turbulence** mixing and A.M. transfer coefficients roughly equal.

Global Circulation

Urpin 1984

ZO

ZR

Kley & Lin 1992

Takeuchi & Lin 2002

Two basic questions:

- 1. How is angular momentum removed?
- 2. What mixing processes are at work?

 Directly detect gas flows. Expect spiral shocks, helical outflow, or surface layer turbulence.

CO Overtone Bandhead in SVS13

Carr et al. 2004

- Directly detect gas flows.
- Is gravitational instability active? Map the surface density and midplane temperature.

Dartois et al. 2003

- Directly detect gas flows.
- Is gravitational instability active?
- Is the gas tied to magnetic field lines? Measure charged particle fraction.

Model H₂D⁺ 372.4 GHz Maps

Intensity units 10⁻⁶ erg cm⁻² s⁻¹ sr⁻¹

Asensio Ramos et al. 2007

- Directly detect gas flows.
- Is gravitational instability active?
- Is the gas tied to magnetic field lines?
- Are the fields straight or tangled? Are the strength and orientation consistent with a wind? With MRI?

850μm continuum polarization vectors from JCMT

Tamura et al. 1999

- Directly detect gas flows.
- Is gravitational instability active?
- Is the gas tied to magnetic field lines?
- Are the fields straight or tangled?
- What are the mixing rates? Match abundances against chemical models including mixing.

Abundances can be increased or reduced by vertical mixing.

llgner et al. 2004

- Directly detect gas flows.
- Is gravitational instability active?
- Is the gas tied to magnetic field lines?
- Are the fields straight or tangled?
- What are the mixing rates?