Massive Protoclusters: Keys to Understanding Massive Star Formation

Todd Hunter (NRAO), Crystal Brogan (NRAO)

"Transformational Science with ALMA", Charlottesville, VA (June 22, 2007)

Some important features of clusters

- Mass segregation
- Rapid formation ~ 10⁶ yr (small age spread)
- Common metallicity
- All massive stars form here

Not enough observational information for a unique theory

If we could examine clusters at earlier stages of formation, (i.e. "protoclusters"), we could add stronger constraints on SF theory.

How to detect a "protocluster"?

Phenomenological definition of protocluster stages 0: PPclCs (pre-proto cluster core) massive cloud core without collapse 1: early protocluster stages 1: early protocluster massive stars have mm Klein et al. 2005 2: protocluster the forming massive mm, FIR, stars begin to clear a radio cavity, an HII region begins to evolve 3: evolved protocluster the cluster starts to mm, FIR, emerge, but is still mm, FIR, MIR, radio
protocluster 1: early protocluster massive stars have mm stages 1: early protocluster massive stars have mm Klein et al. 2005 2: protocluster the forming massive mm, FIR, stars begin to clear a cavity, an HII region begins to evolve 3: evolved protocluster the cluster starts to emerge, but is still mm, FIR, MIR, radio
Klein et al. 2005 2: protocluster the forming massive stars begin to clear a cavity, an HII region begins to evolve mm, FIR, radio 3: evolved protocluster the cluster starts to emerge, but is still mm, FIR, MIR, radio
3: evolved protocluster the cluster starts to mm, FIR, emerge, but is still MIR, radio
3: evolved protocluster the cluster starts to mm, FIR, emerge, but is still MIR, radio
embedded
4: young cluster the cluster has emerged mm, FIR, from its parental cloud MIR, NIR
5: cluster the cluster has MIR, NIR dispersed its parental cloud

What does a massive protocluster look like?

A compact group of millimeter dust continuum sources with:

> Far-IR luminosity > 1000 L_{\odot} (massive)

Multiplicity ≥ 3 within 0.10 pc i.e. 3000 pc⁻³ (~Orion) < 10" at 2 kpc</p> (cluster)

Majority of components lacking near-IR and mid-IR counterparts

(proto)

What will a massive protocluster look like?

Trapezium in H Alpha

NGC 6334 I at 1.3 mm

At 1.7 kpc, 2'' = 3400 AUHunter et al. (2006)

Recently-found protoclusters at 1.3mm

<u>Field</u>	<u>Mult</u>	iplicity	Lumino	<u>osity</u>	<u>Pape</u>	<u>er</u>
NGC 6334 I		4	$10^{5.4} L_{\odot}$	Hunte	er et al. 20	006
S 255 N		3	10 ^{5.0}	Cyga	anowski e	t al. 2007
Ceph-A East	5	104.3	Brogan	et al. 2	007	
IRDC G24.60-	+0.08	5 104.0	Rathbo	orne et	al. 2007	
IRAS 05358+3	3543	4	10 ^{3.8}	Beut	her et al. 2	2007
NGC 6334 I(N	J)	6	10 ^{3.4}	Hunt	ter et al. 2	006
AFGL 5142		5	10 ^{3.4}	Zhang	g et al. 200	07
IC 1396 N		3	$10^{2.5}$	Fuen	ite et al. 20	007

This is a rapidly-advancing field and this is by no means an exhaustive list!

Another example: S255N (d=2.6 kpc)

HST

images shrunk to the same physical scale —

0 ∇§ (accsec) -5 SMA

IRDC G24.60+0.08, L ~ 10^{4.3} L_•

Lower mass example: IC1396N

PdBI 1.3 mm

L~300 L_⊙ Herbig Ae 0.75 kpc

Fuente et al. (2007)

ALMA will reveal the Big Picture

 Even low mass protostars & protostellar disks will be detectable out to several kpc → more complete census of protoclusters, even if invisible in the IR

Low-mass disks in continuum:

~ 100 mJy at 345 GHz at 140 pc (SMA; Andrews & Williams 2007)

ALMA sensitivity ~ 0.045 mJy rms in 30 minutes:

10σ detection out to 2.0 kpc

In spectral lines, e.g. H¹³CN(4-3):

~ 1.4 Jy at 220 pc (NGC1333 IRAS2A, SMA; Jorgensen 2005)
 ALMA sensitivity ~ 3 mJy rms in 30 minutes (2km/s):
 10σ detection out to 1.5 kpc

Challenges: sorting out the individual luminosities, masses, grain properties, and ages

ALMA will reveal the Big Picture

2. Line emission from dense, optically-thin gas will provide the velocity dispersion of the cluster and help pinpoint evolutionary state of members

ALMA will reveal the Big Picture

2. Line emission from dense, optically-thin gas will provide the velocity dispersion of the cluster and help pinpoint evolutionary state of members

Summary

- 1. ALMA will provide an unprecedented census (IMF) of protoclusters, even while they are still invisible in the infrared
- 2. ALMA will measure the velocity dispersions which could be a key discriminator between SF theories
 - Protostars may retain velocity of progenitor core
 Does velocity dispersion of cores affect IMF?
 Are number densities high enough for mergers?
- 3. Comparative chemistry will also provide powerful diagnostics of evolutionary state