Stuctural diversity – resolving Herbig Ae/Be circumstellar Disks at 10-150 AU using PDI

NACO

Henning Avenhaus Institute for Astronomy, ETH Zürich 2013 ROCKS! Conference, Hawaii

Sascha Quanz, Hans Martin Schmid, Antonio Garufi, Michael Meyer, Sebastian Wolf and others

www.lightscapes.ch

Why image protoplanetary disks?

SED can give a lot of information, but is degenerate w.r.t. fine disk structures

Information from scattered light:

- Extent, orientation, inclination, eccentricity, ...
- Sub-structures within the disk
- Signatures of planet formation
 - \rightarrow We need resolved, highresolution images!

5/2/13

We want to do: High-resolution imaging...

... in the near-IR with small inner working angle

Can probe planet-forming zones (0.1" at 100 pc is 10 AU)

4

Polarimetric Differential Imaging (PDI) explained

5

What we see: An overview

SAO206462

HD97048

HD169142

HD142527

HD163296

HD142527: An intensively studied Herbig star

F6 star of 2-12 Myr at ~145pc

- Outer disk with very large scale height
- Asymmetric inner hole out to ~100-130 AU
- Inner, self-shadowed disk

HD142527: A large inner hole

Ks-band polarized flux (scaled with r²) Avenhaus et al. 2013 (in prep.)


```
Sub-mm continuum emission
Casassus et al. 2013
```

HD142527 inner hole: How empty is empty?

Weak evidence for dust scattering within the hole, but no "streamers" can be seen (scattering >100x weaker than in outer disk)

 \rightarrow Too faint? Shadowed by inner disk? No streamers?

HD142527: Sub-structures in the disk

Avenhaus et al. 2013 (in prep.)

Six spiral arms (at least two of these were known before)

Prominent holes in the disk:

- In northern direction, PA ~0°
- In southeastern direction, PA ~150°

All substructures seen in both H and Ks filters (and we have colors)

HD142527: An asymmetry in the north?

- Sub-mm continuum is highly asymmetric in northern direction (dust trapping?)
- Verhoeff et al (2011) argue for planet at PA ~0° based on "trojans" seen in mid-IR
- A hole is seen in scattered light in the northern direction
- Planet? Maximum mass a few M_{Jup} based on planet searches (Rameau et al. 2012, Casassus et al. 2013)

HD142527: Estimating disk parameters

Avenhaus et al. 2013 (in prep.)

Well-resolved inner rim allows to fit a phenomenological model for the inner rim

Direct, self-consistent estimates:

- Inclination
- Eccentricity (~0.14)
- Semi-major axis of inner rim
- Scale height of inner rim (~50 AU)

But: Inner rim scale height and inclination highly degenerate

HD142527: Conclusions

HD142527 is a very interesting disk:

- Large inner hole, large scale height
- Variety of substructures in outer disk
- Different substructures at different wavelengths

What we learn:

- Only weak evidence for very faint dust scattering in inner hole
- No trace of "streamers"
- No trace of inner disk or halo (likely self-shadowed)
- Disk parameters can be directly estimated

SAO206462 (also known as HD135344B)

~3-12 Myr F4 star at ~140pc

Detections:

- Double-armed spiral structure
- Inner hole inside of ~25 AU
- Inner working angle: 0.07"

Questions to answer:

- Origin of spiral arms? Spiral density waves?
- Origin of gap?
- Structures are on the surface of the disk! (Optically thick)
- → Simulations and further observations (ALMA) required

Garufi, Avenhaus et al. 2013 (in prep.)

HD169142

A7 star at ~145pc, ~3-12 Myr

Disk features:

- Bright ring at ~25 AU featuring a dip
- Gap at ~30-60 AU
- Outer disk with steep SB profile

What is the origin of the gap?

Quanz, Avenhaus et al. 2013

HD169142: What causes the gap?

Possibility one: Puffed up inner rim and disk shadow

Possibility two: Annular gap in the disk (opened by planet?)

ALMA can answer this question!

PDI: Some thoughts

PDI can give us access to the inner parts of a disk:

- High resolution (short wavelength on big telescope)
- High contrast (uses its own PSF for subtraction)
- Otherwise unreachable inner working angle of ~0.1"
- Same resolution as ALMA, complimentary information

But, we have to be aware:

- We are probing scattered light, thus surface of disk (optically thick)
- Polarimetric efficiency variations can mimic structure

Conclusions

To understand planet formation, we need to have imaging that is

- High-resolution (to resolve the structures we are interested in)
- (For scattered light): High-contrast (bright central star)
- Small inner working angle (to probe planet-forming zones)

Few techniques are able to do this:

- In (sub)-mm, ALMA is now able to achieve required resolution
- In the mid-IR, we have no telescope big enough
- In scattered light (visible, near-IR), only PDI can get the inner working angle
- → Scattered light and sub-mm observations are complimentary to probe both surface and mid-plane of protoplanetary disks

Future prospects

Visible / near-IR

- Further disk studies and follow-up observations using VLT/NACO
- Higher resolution, better contrast using VLT/SPHERE

Sub-mm / mm

- Find out whether the spirals / rings we see translate to mid-plane structures
- ALMA at similar resolution (Cycle 2)

Modelling

- Translate models to scattered-light images using radiative transfer code
- Try to understand the surfaces of disks