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> What are transition disks?
» Observations of transition disks
» Mechanisms that produce them

» Some open issues that ALMA can resolve



What are transition disks?

(Strom et al. 1989)

In this regard, we have identified several PMS stars that
show small near-IR excesses, but significant mid- and far-IR
excesses. Such objects may represent stars in which the inner
disk regions (r < 0.1 AU) are relatively devoid of distributed
matter, while the outer disk regions still contain substantial
amounts of dust. More sensitive mid-infrared, submilli-




What are transition disks?

* Decreased emission in NIR/MIR
* Deficit of inner IR-emitting dust
e Disk evolutionary stage likely intermediat

between Classes Il and Il
e Optically thin inner disk, thick outer disk

(Lada & Wilking classification)
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What are transition disks?

(Lada & Wilking classification)
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Observations of Transition Disks



Observations of transition disks

* Transition disks exhibit varied morphologies

(Williams & Cieza 2011)
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Observations of transition disks

* Transition disks exhibit varied morphologies

(Williams & Cieza 2011)
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Observations of transition disks

* Transition disks exhibit varied morphologies
(Williams & Cieza 2011)

¢ Photometry from optical to mid-IR wavelengths — Stellar photosphere

— Spitzer IR spectra Range of SEDs for typical accreting T Tauri stars
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Observations of transition disks

(Espaillat et al. 2012)

* Transition disks exhibit varied morphologies

* They have lower accretion rates than “full” disks
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Najita et al. 2007: factor 10 lower accretion

Median accretion rate ~ 3 x 10° M, yr!



Observations of transition disks

* Transition disks exhibit varied morphologies
* They have lower accretion rates than average

* Frequency estimated to be ~ 10-20% overall, ~5-10% for “cold” disks (W&C '11)

(Kim et al. 2013)
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Physical mechanisms that create gaps/holes
in transition disks



Mechanisms that create gaps/holes in disks: I. Grain Growth

Opacity drops with increasing a,,,in a dust grain size distribution.

(D’Alessio et al. 2001)
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Grain growth and settling faster in denser regions at small radii.



Mechanisms that create gaps/holes in disks: I. Grain Growth

> SED variations v'?

“Median” Taurus-like SED

) (Dullemond & Dominik 2005)
> Lower accretion v/
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Grain growth and settling faster in denser regions at small radii.



Mechanisms that create gaps/holes in disks: Il. Giant Planet Formation
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Mechanisms that create gaps/holes in disks: Il. Giant Planet Formation
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» SED variations v/
(Gap depends on planet mass)

» Lower accretion v/
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Mechanisms that create gaps/holes in disks: Ill. Photoevaporation

Thermal wind from heated disk surface that
results in mass loss.
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Gap opens when accretion rate drops below
the photoevaporation rate at some radius

(Talk by B.Ercolano)
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Mechanisms that create gaps/holes in disks: Ill. Photoevaporation

> SED variations v/

Disk mass at gap creation epoch can vary, and hence mass of outer disk can vary.

Mass loss depends on strength of stellar high energy radiation
field: EUV, FUV and X-ray luminosities.

Low chromospheric FUV, and mainly

Higher chromospheric FUV ,
accretion generated.
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Mechanisms that create gaps/holes in disks: Ill. Photoevaporation

» SED variations v/
(Strength of radiation field)

» Lower accretion v/
(Needs to be lower than photoevaporation rate to create gap)



Mechanisms that create gaps/holes in disks: Ill. Photoevaporation

» SED variations v/
(Strength of radiation field)

» Lower accretion (V') X
(Needs to be lower than photoevaporation rate to create gap)

» Frequency X

Continued accretion and frequency of accreting disks not compatible
with our models of EUV, FUV + X-ray photoevaporation. (Gorti et al.)

Viscous timescale at r ., (~ 1AU) is < 10° years, disk lifetimes are ~ 4-5Myrs;
expected frequency of accreting transition disks is ~ 2%.



Mechanisms that create gaps/holes in disks: Ill. Photoevaporation

» SED variations v/
(Strength of radiation field)

» Lower accretion v/
(Needs to be lower than photoevaporation rate to create gap)

» Frequency v

However, XEUV photoevaporation models of Ercolano et al, Owen et al.,
obtain shorter disk lifetimes of ~1Myrs, and can explain the frequency observed.

(Talk by B.Ercolano)



Mechanisms that create gaps/holes in disks: 1V. MRI-induced evacuation

(Perez-Becker & Chiang 2011)
(Chiang & Murray-Clay 2008)

Dust filtration mechanism
keeps the dust from being
accreted with the gas.

MRI-active rim erodes its way out and creates
hole in disk.



Mechanisms that create gaps/holes in disks: 1V. MRI-induced evacuation

> SED variations ? vV

(Depends on the dust carried with gas) (Perez-Becker & Chiang 2011)
(Chiang & Murray-Clay 2008)
> Lower accretion X N

Accretion rate increases with r,

» Frequency X
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Some Problems and Issues



Open issues: Inter-dependence of hole-creating mechanisms

Grain growth ====) Giant Planet Formation

Grain growth must precede planet formation at least in the core accretion scenario.
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Open issues: Inter-dependence of hole-creating mechanisms

Grain growth 4= Gijant Planet Formation

Planets cause pressure gradients at the outer edge which trap dust and allow growth.

Flared Disk, M,=1.0M, & a=10"

R —

(Pinilla et al. 2012)



Open issues: Inter-dependence of hole-creating mechanisms

Grain growth e===) Photoevaporation
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Open issues: Inter-dependence of hole-creating mechanisms

Grain growth <¢==== Photoevaporation
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Open issues: Inter-dependence of hole-creating mechanisms

Photoevaporation

m==)  Giant Planet Formation

Mass of giant planet is set by the disk dispersal time
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* Planet needs to be massive
enough to open gap, but will
grow further very rapidly.

» Will accrete gas as long as disk
persists. Accretion halts when
either planet is too massive or
disk mass becomes low.

* Median accretion rate of
transition disks —3x10° M, yr!
Planet must accrete at nearly
3x108 M, yril A 1M, planet
will grow ~ 15 M, in 0.5 Myrs.



Open issues: Inter-dependence of hole-creating mechanisms

Photoevaporation @ == Giant Planet Formation

Giant planet formation timescales are similar to disk lifetimes: causal relationship?

10M; core grows to 1M, at 5AU

Unperturbed disk 0000 — Gap created by a massive planet
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Open issues: Inter-dependence of hole-creating mechanisms

MRI Evacuation — =====) Grain growth, Photoevaporation

* Pressure gradient at rim may trap
dust (Pinilla et al. 2012), even without
planet. Grains may grow at rim.

* Again, presence of rim will enhance
photoevaporation rates.



Gas in the cavities of transition disks: Observing with ALMA

Gas observations provide valuable information on nature of the holes/gaps.
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TW Hya disk: Gas line emission modeling

At radii smaller than r ~ 4 AU, dust depleted by
~100-1000, gasis depleted by ~ 10-100.

Grain Growth: Gas depletion is also needed.

Planet formation: Possible explanation. Perhaps
4-7M, planet inferred from the large gas

surface density contrast. Gas streams past
planet to accrete onto star.

Photoevaporation: Viscous clearing timescales are
too short for photoevaporation to create the
hole. FUV/X-ray photoevaporation ~ 4 x 10~
M, yr, consistent with observed [Nell] wind.



Gas in the cavities of transition disks: Observing with ALMA

* |s there gas in the inner hole?
- Direct imaging: accretion streams (CO, HCO*) — Planet present (talk by S.Casassus)
- Velocity information: warps in the disk and other dynamical signatures
(e.g., Rosenfeld at al. 2012)

- No gas or gaps at expected critical radii: photoevaporation

* How much gas is there?
- Measure of gas depletion: planet formation or photoevaporation
- Potentially, mass of holes in fairly large holes (inside CO freezeout) could be
reasonably well determined with multiple tracers, CO, HCO*, C*80, 3C1’0
(poster P4, S. Bruderer)

* Gas evolution of the outer disk
- What kind of disks form giant planets?
- Sizes can be determined with tracers of various optical depth, will determine
available mass to some extent.
- Blue-shifts/asymmetries with blue excess in line profiles — photoevaporative winds?
(talk by G. Blake)



Thank you!



