

Exploring the Physical and Chemical Diversity of the Solar System: The Submillimeter Approach

Arielle Moullet, NRAO M. Gurwell (CfA), B. Butler (NRAO), E. Lellouch (Paris Obervatory)

Studying a closeby evolved system: what's the point?

Information relevant to exoplanetary systems and disks:

 clues to <u>system formation</u>: isotopic ratios, bulk densities, dynamical families, ...

- characterization of <u>chemical and physical processes</u>: seasonal cycles, gas escape, surface alteration, volcanism, ...

retracing the **history of inclividual bodies** : climate, water content, organic chemistry

What is (sub)mm radiation in the solar system?

What is (sub)mm radiation in the solar system?

What is (sub)mm radiation in the solar system?

- Surface continum emission (airless bodies/ transparent atmosphere

> Pluto/Charon system, SMA, Gurwell et al., 2005

Atmospheric pseudo-continuum
collisional emission (pressures ~1 bar)

HC₃N line on Titan, IRAM-Moreno et al., 2005

- Atmospheric rotational lines (pressures 1bar -> 1microbar)

Performed observation projects

Mapping CO, Detection SO_2 , H_2O , HDO, SO Mesospheric dynamics

Brightness temperature measurements PH_3 , H_2O , NH_3 , CO, CS detections HCN mapping

<u>Io</u> : mapping SO₂, SO Detection NaCl, KCl Winds

Mapping CO

H₂O,HDO

Winds

Detection H_2O_2 ,

Detection PH_3 , CO, H_2O

 $\underline{\text{Titan}}$: Detection HCN, CO, HC₃N, CH₃CN, H₂O Winds

Detection CO, HCN, H_2O

Detection H₂O

Detection of Pluto and 7 other Kuiper Belt Objects, CO detection

Outline

I) Atmospheric **composition** - Jupiter's moon Io

II) Atmospheric **dynamics** - Venus' mesosphere

III) **Surface properties** - Kuiper Belt Objects

I) Atmospheric composition

Detection of rotational lines of atmospheric compounds: CO, HCN, HDO, H_2O , SO_2 , SO, ...

- Line profile analysis: column density- vertical mixing profile

I) Atmospheric composition

- Line emission mapping : horizontal distribution

Single dish instruments: Venus, Jupiter Interferometers: ice giants, Mars, large moons and asteroids, Pluto (ALMA)

CO(3-2) and H(4-3) integrated line emission on Neptune, SMA, Moullet et al., 2011

Io, Jupiter's volcanic moon

- Strongest **volcanic activity** in solar system
- <u>SO, frost</u>-covered surface
- Environment: neutral clouds and **plasma torus**
- <u>SO₂ atmosphere</u>. tenuous (1-10nbar)

Schneider and Bagenal, 2007

Io's atmosphere processes

Thermal escape

Torus stripping (~1ton/s)

Photochemistry

- What are the expelled volcanic gases?
- How is the atmosphere replenished?
- How (much) does the atmosphere feed the environment ?

SO₂ lines analysis

SO₂ lines, IRAM-30m, Lellouch et al., 1990 Atmospheric structure interpretations from diskintegrated observations :

- very localized (<20%) hot (~500 K) quite dense (~ $6e^{17}cm^{-2}$)

- <u>spread-out</u>, cold (~140 K), lower density (~1e¹⁶ cm⁻²)

- SO₂ spatially extended, local-hour restricted: Coherent with **sublimation-sustainment**

- Comparison to plume emission models: **volcanic contribution is minor**

SO₂ mapping

SO₂ integrated emission, IRAM-PdBI, Moullet et al., 2008

> Simulation of a volcanicallysustained atmosphere based on Galileo plume localisation

Volcanic gases exploration

Schaefer et al., 2004

Zolotov et al., 1998

Plume composition depends on vent temperature, conduit pressure, atomic ratios : **defines volcanic regimes**

Sodium chloride

Leading hemisphere ² Leading, 2008 21 Trailind, 2008 338.0Ž1 GHz 338.021 \GH7 Rms=0.08 JvRms=0.09 A 5y (") 5y (") \cap 0 Ω -1 0 -2-1 O. -2 -1 δx (") δx (")

NaCl emission, SMA, Moullet et al., 2010

- (Low quality) Mapping suggests localized emission
- Volcanism can be the sole NaCl source if NaCl/SO₂ 0.6-2.5 %

Trailing hemisphere

• Short atmospheric lifetime: **plume activity tracer on day-side**

Potassium chloride

Expected source of K in neutral clouds, Jupiter's rings

- Tentative detection: $KCl/SO2 = 5(+/-2) \ge 10^{-4}$
- **Consistent with purely volcanic sustainement**

Very low Na/K ratio (~2.7): Ultra-potassic lavas? Vaporization fractionation?

Tentative detection of KCl line, APEX, Moullet et al., 2013

Next composition exploration: ALMA

153.087 km/s

20⁶.60

J2000 Right Ascension

20⁸.55

 $20^{\circ}.50$

Observing time awarded in

Goals : firm detection of KCl,

detections of SiO, S_2O , ${}^{34}S..$:

→ constrain volcanism

Spatial resolution ~ 0.3 ":

→ characterize sublimation

Cycle 0 and Cycle 1

II) Atmospheric dynamics

Doppler-shift mapping in line cores directly indicate projected wind velocity

High altitudes **rarely probed by other techniques**

¹³CO line cores in Venus, JCMT, Clancy et al., 2012

Coupling of temperature and wind-field to **constrain GCMs** (global circulation models)

II) Atmospheric dynamics

Titan (450km altitude)

Mars (50km altitude)

Io (ground level)

CH₃CN Doppler-shifts, IRAM-PdBI, Moreno et al., 2005 CO Doppler-shifts, IRAM-PdBI, Moreno et al., 2009 SO₂ Doppler-shifts, IRAM-PdBI, Moullet et al., 2008

Venus' atmosphere dynamic structure

Venus' atmosphere dynamic structure

Venus' atmosphere dynamic structure

CO horizontal distribution

CO(1-0) altitude line contributions, Moullet et al., 2012

> CO(1-0) mapping, morning hemisphere, IRAM-PdBI, Moullet et al., 2012

CO line cores sound:

90-105 km CO(1-0) **95-110 km** CO(2-1) CO lines are deeper on the night-side:

Displacement of CO from day to night-side

Venus' phases and wind geometry

Quadrature East (evening) Quadrature West (morning)

Interferometric Doppler-shift mapping

Superior conjunction

CO(1-0) and CO(2-1) mapping, SMA and CARMA. Errors 30-40 m/s

Quadrature West

- Day to night wind dominating
- Significant velocity variations with local-hour

Quadrature East

Interferometric Doppler-shift mapping

Observations IRAM-PdBI 2007/2009, morning hemisphere, precision 10-20m/s

- Temporally stable wind-field
- Global day-to-night flow 200 m/s
- Equatorial retrograde zonal jet ~100m/s
- Latitudinal / local hour wind variations

CO(1-0) Doppler-shifts, morning hemisphere, IRAM-PdBI, Moullet et al., 2012

Further investigations

Wind structure more complex than a combination of day-to-night / zonal flow

Oxygen airglow monitoring, VEx-VIRTIS, Hueso et al., 2008

ALMA

To estimate altitude wind-shear:

 \rightarrow simultaneous use of **multiple lines**

To detect wind variations at high latitudes: \rightarrow high spatial resolution (~0.5-1")

To detect quick temporal variations (~1 hour): \rightarrow **snapshot** wind measurements

Thermal emission radiative effects:

Snell-Fresnel laws at surface/air interface: -> refraction index, surface roughness

Surfaces not transparent at thermal wavelengths: -> absorption coefficient

The total emission combines contributions from different depths, down to $\sim 10 \lambda$

III) Surfaces properties

$$T_{\phi} = \left[\frac{(1 - p_{bolo})F}{r_h^2 \varepsilon_{bolo} \sigma}\right]^{1/4} \Omega_{\Theta,i}(lat, long, z) = T_{SS} \Omega_{\Theta,i}(lat, long, z)$$

Temperature field depends on

geometric properties: shape, rotation rate

orbital properties: hel. Distance, pole direction

surface properties: albedo, thermal inertia

Temperature distribution model for Haumea, Mueller et al., 2008

Radiometric method

Morrison et al., 1977

Optical magnitude \propto albedo . D²

Thermal emission $\propto B(v,T((1-a)^{0.25}))$. D²

Independant estimate of albedo and equivalent size

If mass known (binaries): **density** estimate

<u>D</u>etection of Centaur 1999 TZ1, IRAM-30m, Moullet et al. 2008

Radiometric method

Thermals models defined through beaming parameter $\boldsymbol{\eta}$

η constrained by multi-wavelengths thermal photometry

Thermal lightcurves

Time-resolved radiometric method can distinguish albedo distribution/ shape (apparent size variation)

Vesta's thermal lightcurve, SMA

Haumea's optical and thermal lightcurves with Herschel, Lellouch et al., 2010

The case for Kuiper Belt Objects

- Analog of planetesimals in[°] debris disk
- Most pristine material in the Solar System

1000+ KBOs 200 Scattered objects

Role of thermal observations

• Measurement of size distribution: collisional grinding/accretion in a planetesimal belt

• Density (ice to rock ratio): physical properties in the **primitive Solar nebula**

 Albedo distribution, albedo/size correlations: physical and collisional processes on cold/distant surfaces

Densities and diameters, Brown et al., 2012

Role of thermal observations

~4 sizes with ISO

 \sim 45 sizes with Spitzer-MIPS (Centaurs)

 ${\sim}8$ sizes with IRAM-30m MAMBO bolometer

The trans-neptunian object UB₃₁₃ is larger than Pluto

F. Bertoldi^{1,2}, W. Altenhoff², A. Weiss², K.M. Menten² & C. Thum³

- Herschel : 140 (40) detections PACS, 17 detections SPIRE

Sensitivity very limiting !

ALMA : KBO detection

Diameter detection threshold as a function of Sun distance, Moullet et al., 2011 ALMA B6/B7 (full science): More efficient than Herschel

Diameter threshold for 5σ detection (~2 h integration) - at 30 AU : **110 km** - at 50 AU : **210 km**

 \rightarrow **size/albedo** on 600+ objects

Filling **size distribution**, albedo/size database for correlations

ALMA : size and shapes

Direct analysis of visibilities (~ imaging) combined with lightcurve analysis

Possible on \sim 30 bodies larger than 0.015"

 \rightarrow non model-dependant **sizes**

→ ellipticities or 3-D shape (even on pole on geometry)

Constraints on **internal strength**, **density**

<u>S</u>imulated Charon visibilities @345 GHz, Moullet et al., 2011

ALMA : surface mapping

HST FOC Image of Pluto's sub-Charon hemisphere (North is up)

First KBOs thermal mapping possible, **resolution ~15mas**

Detection of 10% temperature variations on 6 large bodies

→ horizontal variations of albedo/ thermal inertia/ temperature

Constraints on **resurfacing processes**

Pluto, Band 7, very extended configuration simulation

ALMA : multiple system imaging

Large fraction of multiple systems: ~10%. Many ~equally-sized

Separations $2'' \rightarrow \text{contact binaries.}$ ALMA resolution (B7) -> 0.01'' (Hubble: 0.04'')

What does (sub)mm radiation in the Solar System tell us ?

- Atmospheric composition
- Atmospheric structure
- Wind and temperature fields
- Surface thermal and reflective properties
- Small bodies' equivalent sizes

Unique and essential measurements to constrain

- climates
- surface and atmospheric processes
- collisional /chemical evolution

(Sub)mm Solar System science in the ALMA era: a new range of possibilities

• Sensitivity increase (80-900 GHz): factor 10-40.

minor species detections, tenuous atmospheres, small/distant bodies

• **Spatial resolution**: factor 10-20

High-res mapping of planets, mapping of large asteroids and KBOs, limb resolution

Imaging snapshot capabilities : quasi-instantaneous

temporal monitoring of winds and quick phenomena

Performed/accepted projects

Sulfur and HDO mapping, Chlorine species, winds

Io: chemistry, winds Storm CO and temp. mapping

Titan: nitrile detection and mapping, winds

Medium-sized KBOs detection

Comet PanStarrs

HCN, CO and isotopologues