Using HD to Measure the Gas Mass of a Protoplanetary Disk

Edwin (Ted) Bergin (Univ. of Michigan)

HD and Disk Gas Mass

Excellent collaborators:

- Ilsedore Cleeves
- Uma Gorti
- Ke Zhang
- Geoffrey Blake
- Joel Green
- Sean Andrews

- Thomas Henning
- Karin Öberg
- Klaus Pontoppidan
- Chunhua Qi
- Colette Salyk
- Ewine van Dishoeck

Neal Evans

Funding from NASA for Herschel OT and NSF for chemical modeling

Protoplanetary Disk Gas Mass

- The disk gas mass is the fundamental quantity that determines whether planets can form and on the primary mechanism for gas giant formation.
- For our solar system we have an estimate of the so called minimum mass of 0.01 M_☉
- BUT we are clearly detecting exo-planetary systems with more massive planets.

Protoplanetary Disk Gas Mass

- For protoplanetary disks it is more complicated
 - H₂ contains all the mass but is unemissive for typical temperatures (20 K) that characterize the disk mass reservoir
- Two proxies are used:
 - thermal emission from dust grains at mm/sub-mm wavelengths (and a gas to dust ratio)
 - thermo-chemical modeling of gas emission, primarily CO and isotopologues (and a CO abundance)

Andrews et al. 2009

• Mass (gas + dust) = $F_v D^2 / K_v B_v [T(r)]$

• at sub-mm wavelengths - Mass $\propto F_{\nu}/\kappa_{\nu}T$

Protoplanetary Disk Gas Mass

- at submm wavelengths emission proportional to K (T = Kσ)
- K = dust mass opacity
- σ = mass column density of grains
- Because of grain growth mass is uncertain - perhaps by a large factor

Protoplanetary Disk Gas Mass

Thermo-chemical Models

- Models of the coupled disk thermal physics and chemistry
- key factor $T_{gas} \neq T_{dust}$
- Include relevant heating, cooling, chemistry as a function of radial and vertical distance
 - dependent on grain physics (and optical properties), UV
 + X-ray radiation field, chemical rates, AND DISK MASS
 - predict line emission of a variety of species (CO, ¹³CO, O I, ...)
- Two models of the closest and best studied object TW Hya - Gorti et al. 2010, Thi et al. 2010

Herschel Detection of HD towards TW Hya

- HD is a million times more emissive than H₂ at T ~ 20 K.
- Atomic D/H ratio inside the local bubble is well characterized (~1.5 x 10⁻⁵)
- HD will follow H₂ in the gas
- New probe of gas mass

Deuterium Abundance

from atomic D & H (Friedman et al. 2006) from HD & H₂ (Neufeld et al. 2006)

HD and the Disk Gas Mass

• Emission is strongly sensitive to gas temperature:

$$M_{gas} \propto \frac{F_l}{x(HD)} D^2 \exp\left(\frac{128.5 K}{T_{gas}}\right)$$

- Does not trace $T_{gas} < 20$ K because J = 1 state is not populated
- Non-detection of HD J = 2 \rightarrow 1 implies T_{gas} < 80 K for HD -- stringent limit is then M_{gas} > 2.2 x 10⁻⁴ M_{\odot}

HD and the Disk Gas Mass

• Use ALMA observations of optically thick CO to constrain $T_{gas} \sim 30$ K inside of R = 43 AU.

• TW Hya minimum gas mass is > 4 x 10^{-3} M_{\odot}

HD and the Disk Gas Mass

- Thermochemical models with $M_{gas} = 3 \times 10^{-3} M_{\odot}$ (Thi et al. 2010) -- predict HD line flux a factor of 20 too low
- Thermochemical models with M_{gas} = 0.06 M_☉ (Gorti et al. 2010) -- are a factor of 2 below observed HD J = 1-0 emission

TW Hya has a massive gas disk
many times MMSN
other systems are underestimated?

Summary

- First detection of HD fundamental transition in a protoplanetary disk
- New estimate of disk gas mass in TW Hya from HD detection implies mass is greater than the minimum mass solar nebula.
- Current survey of 5 systems -- 1.5 additional HD detections.
 - other objects at greater distance and lower sensitivity
 - ⇒ also did not discuss midplane optical depth