

On the origin of the « Horseshoes » seen by ALMA in Transition Disks

François Ménard

UMI-FCA, Chile and IPAG, Grenoble, France

Peggy Varnière – APC, Paris, France Héloïse Méheut – AIM, CEA-Saclay, France Christophe Pinte – UMI-FCA, Chile and IPAG, Grenoble, France Simon Casassus – U de Chile

ALMA transformational science: Dust traps

To form a planet, dust needs to grow... a lot

- * small particles do stick and grow
- * Big bodies do collide and grow into planetesimals
- We have a problem for «meter sizes»
 - * radial drift too fast... boulders don't stay in disk long enough to grow « passed » that barrier.
- * Need a way to overcome
- Pressure maxima and RWI have been proposed to serve as « dust traps » before
 - * 1996 Barge & Sommeira
 - * 1999 Lovelace et al.
 - * 2006 Varniere & Tagger
 - * 2009 Lyra et al.
 - * 2011 Regaly et al.
 - $* \dots$ and the recent work by Birnstiel, Pinilla, Dullemond \dots

Outline

- * ALMA continuum data for Transition Disks
- * The Rossby Wave Instability
 - * Calculation set-up
- * Results of calculations
 - * + qualitative comparison with data

* Future prospects

Institut de Planétologie et d'Astrophysique de Grenoble

I- Transition Disks with ALMA

* HD 142527* Image removed

Recall previous talks by Simon Casassus, Misato Fukagawa & Henning Avenhaus

Image courtesy of Hector Canovas (in prep. 2013)

Image credit: Misato Fukagawa et al.

I- Transition Disks with ALMA

The « horseshoe » is located at the disk rim...

... where conditions are met for RWI to grow

Casassus et al. (2012, 2013)

Image credit: Laura Perez

I- Properties of the Horseshoes

- * Contrast (in surface brightness)
 - * Wide range, from a few to ~100
- For HD 142527 (from Casassus' data set)
 Azimuthal extent
 - * Wavelength dependent
 - * Radial extent
 - * Unresolved with current array,
 - * marginally in Band 9.

IPAG

et d'Astrophysique de Grenoble

II- The Rossby Wave Instability

- * 2 quantities: Vorticity (curl v), density (Σ)
 - * New word: Vortensity = vorticity / density
- * Conditions will be met for RWI to develop at position of extremum in gradient of vortencity.
 - * Was used at boundaries of dead zones
 - * Here we use at Inner Rim of Transition Disks
- * In other words:
 - * Keplerian disks are good places to find large vorticity
 - * Transition disks are good places to find large density gradient with pronounced extrema...

II- The numerical set-up

- A disk « similar » to the outer disk of HD 142527 is used
 - * Surface density profile α r⁻¹
 - * Rim of Outer disk located at I30AU
 - * Sharp Surface density drop
 - * Total disk mass: 0.1 M_{sun}
 - * Global G/D ratio = 100
 - * Not true locally after RWI sets in
 - * Central star mass: 2.0 M_{sun}

- * grid for hydro calculations:
 - * 512 cells radially (between 30 and 350 AU)
 - * 128 cells in azimuth direction

III- Results and Comparison

IPAG Institut de Planétologie et d'Astrophysique

- Long-lived vortex is created
 - * At R ~ 135AU,
 - ★ inner edge
- Survives several 100's of orbits, as long as conditions are present
- * Rotates at ~keplerian period
 - * See Ataiee et al.

Gas Surface density map

Gas density contrast of a factor of ~2.

III- Adding dust to the gas.

III- Adding dust to the gas.

III- Adding dust to the gas.

MAD Metium Ruclea for Dia Research with Anna

III- Preparing for Radiative Transfer

- 2-fluid Hydro sims' are combined to produce one single density grid.
 - * I gas profile
 - * 5 dust profiles
 - * 1,10,100,1mm,1cm
 - Interpolate in between to build complete dust population in each grid cell
 - Assuming a_{min}, a_{max}, & slope
 - 3rd dimension is hydrostatic equiibrium

5.78e-23 1.73e-22 4.05e-22 8.65e-22 1.79e-21 3.63e-21 7.28e-21 1.47e-20 2.92e-20

24

IV- Wrapping up

* For Transition disks observed with ALMA

- Hydro calculations of the Rossby Wave Instability captured the broad features of the observations and their behaviour with frequency
 - * for an object similar to HD 142527
 - * Contrast, azimuthal extent, emissivity

* 3D version of the calculations is underway

IPAG

et d'Astrophysique de Grenoble

IV- To do list (partial)

To confirm presence / role of RWI:

- Behaviour with time
 - * RWI = ~ keplerian rotation
 - * Resonance with Planets will be different
- * Behaviour of « Horseshoes » with size of inner hole
 - * RWI expected to produce larger density asymetries
- * Estimate radial extent of vortex
- * Use (A)symmetry of vortex and Emissivity maps
 - * Broad range of wavelength needed

DATA FITTING will be required (not done here)

need proper treatment of uv coverage

