EXCLUSION OF COSMIC RAYS WITHIN A "T-TAURIOSPHERE"

2013 Rocks! April 7-12, 2013

Tuesday, May 14, 13

Astronomy

Ionization in Protoplanetary Disks

Circumstellar disks around young stars set the chemistry & physics of planet formation.

Ionization drives important physical & chemical processes in disks (Pnueman & Mitchell 1965, Umebayashi 1983, Glassgold et al. 1997, and many others), such as accretion.

Only a handful of molecular ions detected, e.g., HCO⁺, DCO⁺, N₂H⁺ (Dutrey et al. 1997, van Dishoeck et al. 2003, Qi et al. 2008, Öberg et al. 2010, 2011, and others).

Ionization in Protoplanetary Disks

Disk ionization has structure - set by opacity. Of stellar UV and X-rays, cosmic rays dominate ionization in the deep disk midplane!

BUT ARE COSMIC RAYS PRESENT?

THE SUN'S HELIOSPHERE

Movie Credit: NASA / Goddard Space Flight Center Conceptual Image Lab

THE SUN'S HELIOSPHERE

Movie Credit: NASA/Goddard Space Flight Center Conceptual Image Lab

THE SUN'S HELIOSPHERE

Image Credit: NASA/Goddard Space Flight Center Conceptual Image Lab

NUMBER OF TIMES

VOYAGER 1 HAS

LEFT THE SOLAR SYSTEM

Cosmic Ray Exclusion Processes in Disks

Cosmic Ray Exclusion Processes in Disks

THE MODEL

Disk Model

Physical Structure from TORUS (Harries et al. 2000), passively irradiated disk model. FUV and X-ray Monte Carlo RT (Bethell & Bergin 2011a, 2011b). Explore both simple analytic chemistry and full chemical models: (Fogel et al. 2011). Temperature lensity 16.0/ keV Stellar X-rays 15.0∞ 10.0 ∞ 14.0 ≝ 13.0 100 0 200 Pa 12.0' XR (II keV) UV (1400A) 10 1 E (keV) 19 ph / cm² / s / A 12 12 12 Stellar UV **Disk Parameters: Stellar Parameters:** $M_{gas} = 0.076 M_{sun}$ $M_{*} = 1.06 M_{sun}$ $f_{g} = 100$, $R_{*} = 1.8 R_{sun}$ $R_i = 0.1 AU, R_d = 400$ $T_{eff} = 4300 \text{ K}$ σ AU; 85% of mass in $L_{UV} = 0.01 L_{sun}$ 14 $L_{XR} = 10^{-4} L_{sun}$ "big" grains 2000 1200 1600 Wavelength (A)

I. CR Exclusion by Winds: The Solar Wind

I. Variability of CR Modulation

I. CR Modulation by a T.T. Star?

Relate solar magnetic activity (spots) to magnitude of CR exclusion.

First-order approximation: treat a T Tauri star as a "souped-up" Sun.

T Tauri spot coverage ranges from 3% - 17% (Bouvier et al. 1989).

Corresponds to modulation strengths of Φ ~ 5 (5%) - 18(10%) GeV.

I. CR Modulation by a T.T. Star?

Relate solar magnetic activity (spots) to magnitude of CR exclusion.

First-order approximation: treat a T Tauri star as a "souped-up" Sun.

T Tauri spot coverage ranges from 3% - 17% (Bouvier et al. 1989).

Corresponds to modulation strengths of Φ ~ 5 (5%) - 18(10%) GeV.

I. CR Modulation by a T.T. Star?

Relate solar magnetic activity (spots) to magnitude of CR exclusion.

First-order approximation: treat a T Tauri star as a "souped-up" Sun.

T Tauri spot coverage ranges from 3% - 17% (Bouvier et al. 1989).

Corresponds to modulation strengths of Φ ~ 5 (5%) - 18(10%) GeV.

Solar Max

. . .

I. Result: Reduced ζcr

From the CR fluxes and H₂ cross sections of Padovani et al. 2009, compute integrated ionization rates $(\zeta_{CR} s^{-1})$.

I. Result: Reduced ζcr

From the CR fluxes and H₂ cross sections of Padovani et al. 2009, compute integrated ionization rates $(\zeta_{CR} s^{-1})$.

I. Result: Reduced ζcr

From the CR fluxes and H₂ cross sections of Padovani et al. 2009, compute integrated ionization rates $(\zeta_{CR} s^{-1})$.

ζ_{CR} < 10⁻²⁰ s⁻¹ for the T Tauri models.

For > 10% spot coverage CRs can be neglected.

Radionuclide Ionization

Inferred short-lived RN rates of $\zeta_{RN} \sim 7$ x 10⁻¹⁹ s⁻¹ (Umebayashi et al. 2009).

- + If correct, $\zeta_{RN} > \zeta_{CR}$ for the entire disk.
 - However, "normal" RN ionization rates completely unknown!
 - Enriched solar history?

*Umebayashi & Nakano 2008, Diehl et al. 2006

Radionuclide Ionization

Inferred short-lived RN rates of $\zeta_{RN} \sim 7$ x 10⁻¹⁹ s⁻¹ (Umebayashi et al. 2009).

+ If correct, $\zeta_{RN} > \zeta_{CR}$ for the entire disk.

However, "normal" RN ionization rates completely unknown!

Enriched solar history?

*Umebayashi & Nakano 2008, Diehl et al. 2006

IMPLICATIONS

I. Turbulence in Disks

Estimates in the literature for minimum ionization fraction to be MRI turbulent. (*Re* and *Am* criteria, Perez-Becker and Chiang 2010).

I. Turbulence in Disks

Estimates in the literature for minimum ionization fraction to be MRI turbulent. (*Re* and *Am* criteria, Perez-Becker and Chiang 2010).

II. Chemistry in Disks

Can we infer the presence of an extrasolar Heliosphere?
"Usual suspects:" HCO⁺, N₂H⁺, & H₂D⁺.

- H₂D⁺ would be great, but there can be issues (Walmsley et al. 2004).
 - But! Limits on H₂D⁺ towards DM Tau consistent with below ISM (Chapillon et al. 2012).

Implications for grain chemistry via hydrogenation.

III. (Preliminary) ALMA Predictions

Creating non-LTE line emission models for ALMAobservable transitions using LIME (Brinch & Hogerheijde 2010).

ALMA Simulations with CASA, D = 140 pc. $i = 0^{\circ}$, 60° . Extract line emission brightness profiles for comparison

to observed profiles.

IV. Extent of a T Tauriosphere

Does it enclose the entire disk?

IV. Extent of a T Tauriosphere

Or some small inner region?

IV. Extent of a T Tauriosphere

Or is it spherical at all?

Conclusions

Wind modulation of the CR ionization rate can be > 4 orders of magnitude lower than an unshielded disk.

- Can inhibit MRI, impact chemistry (e.g., grain surface, deuteration and ion-neutral chemical channels).
- In the absence of CR, RN can become the dominant source of H₂ ionization in the outermost regions and midplane of the disk.

All of these ionization predictions can and will be readily tested by ALMA!

THANK YOU!

Importance of X-rays

Increasing X-ray flux can also substantially increase active region but CRs or RN still necessary in the outer disk.

a) $L_{xr} = 10^{28} \text{ erg/s, b} \ 10^{29.5} \text{ erg/s, c} \ 10^{31} \text{ erg/s.}$

Extent of a T Tauriosphere

