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Major chondritic components: Chondrules, matrix, & CAls

M CR carbonaceous chondrite * chondrules + Fe,Ni-metal
b 27 Y matrix (30-98 vol%)
= B ey LAl * Ca,Al-rich inclusions (CAlIs)

(<1-5 vol%)

 fine-grained matrix
AR (<2-70 vol%)

:

, %Fé,Ni-metal dominated by crystalline material
] —> thermal processing in PPD
(evaporation, condensation, thermal
annealing, & melting)



Classification of chondritic meteorites (chondrites)

 based on mineralogy, petrography, bulk oxygen-isotope & chemical compositions,
chondrites are divided into 15 groups & 3 major classes

Carbonaceous Enstatite Ordinary Other
CI CM CR CV CK CO CB CH EH EL HLLL KR

* letters designating groups refer to a prototype meteorite in a group:
CI — Ivuna-like (CI chondrite: Orgueil)
CM — Mighei-like (CM chondrite: Murchison)
CV — Vigarano-like (CV chondrite: Allende)

* some chondrites are ungrouped (e.g., Acfer 094)
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* intergroup variations in textures, mineralogy, sizes & abundances of chondritic components
* CAls & chondrules present in all chondrite groups & in a comet 81P/Wild 2



CAls & a chondrule fragment from 81P/Wild 2 comet
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Bulk chemical compositions

carbonaceous ordinary, enstatite, & other
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J. Wasson’s lab (UCLA
 CIs compositionally most similar to solar photosph. & in cosmochemistry Cls = Sun

* chondrite groups have distinct bulk chemical compositions

 chondrites within a group are compositionally similar — sampled same asteroid
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II. Ca,Al-rich Inclusions (CAls)

fine-grained CAI
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Redox conditions in CAl-forming region(s)

Pure metallic Fe unstable
Ptot = 103 atm

Pure FeO
IW-1] - IW-2 unstable

C/0=0.43

1600 1700

Tem pe ratu re, K Grossman et al. (2011)

« CAI minerals contain no oxidized Fe (Fe?" or Fe’") & have high Ti**/Ti*" ratio

— formed in highly-reducing, gas-dominated region(s) with a solar H,O/H, ~ 5x10-4



Oxygen-1sotope compositions of CAIs
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e most CAls: 10-rich, close to solar wind value

« some CAls: °O-enriched or '°O-depleted relative solar wind
— early generation of 1sotopically distinct oxygen reservoirs in PPD
#* mechanism of generation of these reservoirs 1s not understood (CO self-shielding?)

#t  O-1sotope compositions of primordial dust & gas are not known



Short-lived radionuclides (>*Mn, *°Fe, 32Hf, , 2°Al, 1Ca)

* 3Mn (¢, ~ 3.7 Myr), ®Fe (2.6 Myr), '82Hf (9 Myr): uniformly distributed in PPD
& 1nherited from MC

— 33Mn & '82Hf are used for chronology of SS processes

« 19Be (#,,~ 1.5 Myr), 2°Al (0.7 Myr), & #'Ca (0.1 Myr): heterogeneous among CAls
. energetic particle irradiation near protoSun
— formation of CAls near protoSun
26A] & 41Ca correlate with each other, but do not correlate with 1'Be;
26A1 in PPD is too high to be explained by irradiation Dupra & Tatischeff (2007) ApJ
— external, stellar origin
— Solar System formed near massive star(s) (SN*, AGB, Wolf-Rayet)

*previously inferred high abundance of %“Fe requiring SN source has not been
confirmed (check poster #43 by M. Telus)



26A1 heterogeneity during epoch of CAI formation
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CAls: Summary

« carliest SS solids dated: ~4567.3 Ma = age of SS = time 0 in cosmochemistry

* evaporation, condensation, aggregation, irradiation (1°Be) & +melting processes in
a gas of solar composition (reduced & '°O-rich) in region(s) with ambient T >1400K

« carly generation of 1sotopically distinct oxygen reservoirs in PPD
* heterogeneous distribution of 2°Al & #'Ca in PPD

— recent injection of 2°Al into 2°Al-poor MC core by massive star(s)

— duration of CAI formation is not known & cannot be inferred from 2°Al
— distribution of 2°Al in PPD cannot be inferred from CAls
 present in all chondrite groups & in a comet 81P/Wild 2

— after formation were removed from hot region & dispersed throughout PPD



[1I. Chondrules & fine-grained matrices
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* less refractory than CAls

* contain ferromagnesian silicates (Fe?") & abundant volatiles (Na, K, S)



POI‘phyI'ItIC textures & rehet grains: Incomplete melting
T

pyroxenes “
anorthite )
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* melting (often incomplete) of solid precursors, including fragments of earlier formed
chondrules & CAls



Oxygen-1sotope composmons of chondrules

chondrules made of
isotopically diverse
solids
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e chondrules are 1°0O-depleted relative to CAls

« relict grains '°O-enriched relative host chondrules

— chondrules formed by melting of isotopically diverse precursors in '°O-depleted
gaseous reservoir



Chondrule-matrix relatlonshlp Insights from oxygen 1sotopes
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Chondrule-matrix relationship: Insights from oxygen 1sotopes

Nagashima et al. (2012) LPSC

» matrix & igneous rims around Kakangari chondrules contain abundant '°O-rich grains

— matrix grains were among chondrule precursors



Chondrule-matrix relationship: Insights from bulk chemistry

chondrules
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» matrix & chondrules in a chondrite group are chemically complementary:
e.g., Mg/Si ratio in Renazzo, CR chondrite

matrix 0.65+0.11

chondrules 1.03+0.20
bulk chondrite  0.91

solar Mg/Si 0.90

— matrix & chondrules formed in the same nebular regions throughout the PPD,
contrary to X-wind model suggesting chondrules formed near the protoSun & were
transported to 1-4 AU where they accreted together with thermally unprocessed
matrices (Shu et al. 1996, 1997, 2001)



Chondrules: Relative & absolute chronology

based on petrographic observations
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* if (*°Al/27Al), in PPD was uniform, ~5x10-
— | Myr age gap between CAls & chondrules

— chondrule formation lasted for ~3 Myr
— life-time of PPD is at least 4 Myr



Chondrules: Relative 2°Al-*°Mg & absolute U-Pb chronology
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Relative 2Al-Mg chronology: Absolute U-Pb chronology:

* 1 Myr age gap between CAls & chondrules ¢ chondrule formation started
 chondrule formation lasted for ~3 Myr contemporaneously with CAls
« at least 4 Myr PPD life-time & lasted for at least 3 Myr




Chondrules formed under oxidizing conditions

Pure metallic Fe unstable "—
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 under much more oxidizing (up to IW-1) conditions than CAls (up to IW-7)
* high partial pressures of S1, Na, Mg, Fe, & S (were not lost from chondrule melts)

— formed under non-solar conditions (D/G > 10%xsolar; H,O/H, >10?xsolar)




Models of chondrule formation: Shock waves, impacts, lightning ...
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Chondrules & fine-grained matrices: Summary

* in isotopically distinct regions of inner disk dominated by '°O-poor dust & gas
* at lower ambient T (<650 K) & highly non-solar dust/gas & H,O/H, ratios

e rapid heating (up to 1600°C) & cooling (1-1000°C hr!) of isotopically &
mineralogically diverse solid precursors (fragments of earlier formed chondrules &
CAls, & matrix)

* most matrix was thermally processed during chondrule & CAI formation
 formation mechanisms are not understood: shock waves, impacts, lightning, ...
* started contemporaneously with CAls & lasted ~ 3-4 Myr

— life-time of PPD ~ 3-4 Myr

— duration of accretion of chondrite asteroids ~ 3-4 Myr

 chondrule formation may have been rapidly followed by chondrite accretion



IV. Aqueous activity on chondrite parent bodies

Carbonaceous Enstatite Ordinary Other Ungrouped
CI CM CR CV CK CO CH CB EH EL HL LL K R  Tagish Lake

Murchison, CM

Orgueil, CI




Phyllosilicates, carbonates, Vems chondrule pseudomorphs
BO chondrule pseudomorph : - = g V.

* aqueous alteration occurred on chondrite asteroids, not in the nebula
e CMs, ClIs, & CRs: low-T agq. alteration ~25-100°C at high W/R vol. ratio:




Fayalite- hedenberglte magnetlte Vems
§ MAC 88107 (CM/CO3.1) 5 e g ;

L 4 P " A
* g -
o i >
1 *

PR
« CV,CO,CK,H, L, LL, &R chondrltes T ~ 100- 200°C & low W/R <0.2
* aqueous alteration under highly-oxidizing conditions

« phyllosilicates, fayalite (Fe**,Si0,), magnetite (Fe**Fe,**0,), hedenbergite
CaFe?*Si,O, andradite Ca;Fe,**Si,0,,




Chronology of aqueous alteration

MAC 88107 (CO)
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Doyle et al. (2013) LPSC
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33Mn- 33Cr system: 3*Mn — 33Cr, ¢,, ~3.7 Myr

>3Mn uniformly distributed in PPD with the
(>*Mn/>>Mn),, = 6x107° Kieine et al., 2012, GCA)

Doyle et al. (2013) LPSC
* fayalite in CVs : 3.7 Myr after ¢,
e fayalite in COs : 4.4 Myr after ¢,

Fujiya et al. (2012, 2013) EPSL, Nature Comm.
* carbonates in CMs : ~ 4 Myr after ¢,
e carbonates in CIs : ~ 3.5 Myr after ¢,

— aqueous alteration on CC parent asteroids
started shortly after accretion

— chondrites formed near the snow line

— position of snow line varied with time



Water as a carrier of heavy oxygen in the molecular cloud & PPD
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 1n the CO self—shielding models (Yurimoto & Kuramoto, 2004, Science, Lyons & Young, 2005, Nature ),
water in the outer disk (>30 AU) is highly 7O & 30-enriched relative to the inner disk

(testable by ALMA)

* iron oxides in Acfer 094 (U.Ilgl’.): A”O ~ +90%o0 (Sakamoto et al., 2007, Science)
° grains in IOM from Y-793495 (CR) A0 ~ +500%o (Hashizume et al., 2007)




Oxygen-1sotope compositions of aqueously-formed minerals
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» A0 of aqueously-formed minerals can be
used as a proxy for A7O of asteroid water ices;
it stays ~constant during alteration

e near terrestrial A!7O values of water ices
— local, inner SS origin of water
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Clayton & Mayedan (1999), Rowe et al. (1994), Leshin et al. (2011),
Baker et al. (2002), Benedix et al. (2003)




Sources of water on asteroids: Insights from D/H ratio

Oort Cloud comets+ Enceladus
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/D/Hgpow - 1)x1000 * 0D in chondrites, Oort Cloud & Jupiter
Family comets, & Enceladus

— water in chondrites & comets formed

1n different SS I'CgiOHS (contrary to Walsh et al.,
2011, Nature)

* 0D = (D/Hgyppie
 bulk 0D = phyllosilicates + organics
* 0D of phyllosilicates at C/H=0

— low influx of water from the outer SS into the inner disk ~2 Myr after 7, could be
due to an early growth of Jupiter that prevented significant radial transport of dust from

outside its orbit
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Constraints on the early SS processes from chondrites
Solar System formed near massive star(s)
early generation of '°0-rich & ®O-poor reservoirs in protoplanetary disk

inner Solar System solids experienced extensive thermal processing during
evaporation, condensation, thermal annealing, & melting

thermally processed solids were radially transported to the outer Solar System
life-time of the PPD is ~3-4 Myr

accretion of cm-sized objects started at ¢,

accretion of asteroid-sized bodies started < 1 Myr after ¢, & lasted at least 3-4 Myr
accretion of individual asteroids may have been very rapid

most chondrites accreted water ices, 1.e., were close to the Snow Line

influx of the outer Solar System material was small during chondrite accretion



