Growth and Transport Processes in Protoplanetary Disks

Til Birnstiel Harvard-Smithsonian Center for Astrophysics

11.04.2013

Transformational Science With ALMA: From Dust To Rocks To Planets Waiko

Waikoloa Village, Hawaii

– Introduction –

– Dusty Disks –

- * Rich in small dust grains
- Lifetimes of ~ 3 Myrs
- Evolving viscously

- Dust Physics -

 Vertical Evolution turbulent mixing, settling, dead zones, ...

 Radial (& Azimuthal) Evolution particle drift, mixing, gas drag, meridional flows, turbulent concentration, pressure traps, photophoresis,...

Dust Size Evolution

sticking, bouncing, fragmentation, compaction, erosion, evaporation, condensation, ...

– Outline –

Transport Mechanisms

- Drag Forces
- Radial Drift
- Settling & Mixing

* Growth Mechanisms

- Impact Velocities
- Collisional Outcomes

Global Dust Evolution

- Grain Sizes
- Dust Surface Densities
- Transition Disks

– Transport Mechanisms –

– Drag Force –

 $\tau_{\rm stop} = \frac{v}{\dot{v}} = \frac{m v}{|F_{\rm drag}|}; \quad \text{St} = \frac{\tau_{\rm stop}}{\tau_{\rm orb}} \simeq \frac{a \rho_{\rm s}}{\Sigma_{\rm g}} \frac{\pi}{2} \quad (\text{Stokes number})$

St << 1 i.e. $\tau_{\rm fric} \ll \tau_{\rm orb}$

St ~ 1 i.e. $\tau_{\rm fric} \simeq \tau_{\rm orb}$

St >> 1 i.e. $\tau_{\rm fric} \gg \tau_{\rm orb}$

e.g., Whipple (1972)

– Drag Force –

$$\tau_{\rm stop} = \frac{v}{\dot{v}} = \frac{m v}{|F_{\rm drag}|}; \quad \text{St} = \frac{\tau_{\rm stop}}{\tau_{\rm orb}} \simeq \frac{a \rho_{\rm s}}{\Sigma_{\rm g}} \frac{\pi}{2} \quad (\text{Stokes number})$$

St << 1 i.e. $\tau_{\rm fric} \ll \tau_{\rm orb}$

St >> 1 i.e. $\tau_{\rm fric} \gg \tau_{\rm orb}$

– Drag Force –

 $\tau_{\rm stop} = \frac{v}{\dot{v}} = \frac{m v}{|F_{\rm drag}|}; \quad \text{St} = \frac{\tau_{\rm stop}}{\tau_{\rm orb}} \simeq \frac{a \rho_{\rm s}}{\Sigma_{\rm g}} \frac{\pi}{2} \quad (\text{Stokes number})$

St << 1 i.e. $\tau_{\rm fric} \ll \tau_{\rm orb}$

St ~ 1 i.e. $\tau_{\rm fric} \simeq \tau_{\rm orb}$

St >> 1 i.e. $\tau_{\rm fric} \gg \tau_{\rm orb}$

e.g., Whipple (1972)

۲

– Drag Force –

$$\tau_{\rm stop} = \frac{v}{\dot{v}} = \frac{m v}{|F_{\rm drag}|}; \quad \text{St} = \frac{\tau_{\rm stop}}{\tau_{\rm orb}} \simeq \frac{a \rho_{\rm s}}{\Sigma_{\rm g}} \frac{\pi}{2} \quad (\text{Stokes number})$$

St << 1 i.e. $\tau_{\rm fric} \ll \tau_{\rm orb}$

St ~ 1 i.e. $\tau_{\rm fric} \simeq \tau_{\rm orb}$

St >> 1 i.e.
$$\tau_{\rm fric} \gg \tau_{\rm orb}$$

e.g., Whipple (1972)

-Vertical Settling -

Gravity

Vertical Settling

 $u_{\rm d}^z = -z\Omega_{\rm k}\,{\rm St}$

-Vertical Settling -

Turbulent Mixing $t_{\rm mix} = \frac{z^2}{D}$

-Vertical Settling -

Vertical Settling

e.g., Dubrulle et al. (1995)

Turbulent Mixing

– Radial Drift –

Pressure

en

Gravity

Gravity

- Dust: towards Keplerian
- * Gas: sub-Keplerian
- Result: headwind

⇒ Angular Momentum Transfer from dust to gas

⇒ Orbital Decay

e.g., Weidenschilling (1977) Nakagawa et al. (1986)

– Radial Drift –

Drift towards pressure maximum

$$u_{\rm r} = \frac{1}{\operatorname{St} + \operatorname{St}^{-1}} \frac{c_{\rm s}^2}{u_{\rm k}} \frac{\mathrm{d}\ln P}{\mathrm{d}\ln r}$$

– Summary: Transport –

- * Dust is ...
 - ... dragged along with gas... mixed by turbulence

- * Dust drifts up the pressure gradient:
 - ⇒ sedimentation to mid-plane
 - ⇒ radial drift

All depends on particle size!

- Growth Mechanisms – Velocities, Outcomes, Codes, & Size Evolution

- Relative Velocities -

Trend: impact velocity increases with grain size!

- Collisional Outcomes -

Sticking

Bouncing

Fragmentation

Mass Transfer

Movies courtesy of J. Blum and collaborators, see e.g. Blum & Wurm 2008, Güttler et al. 2010

– Numerical Challenges –

- Large parameter space
- Dynamical Range
 - * Mass: 20 40 orders of magnitude
 - * Particle Number: 1 ... 10²⁶
 - Collision times (0.1 year) vs. disk life time (3 x 10⁶ years)
- already 0D models can take hours

Coagulation

– Monte Carlo Methods –

Examples:

- Gillespie 1975
- Ormel et al. 2007, ...
- Zsom et al. 2008, ...

Pros:

- Easy to code
- Easy to add properties: porosity, charges, velocity distribution, ...

Cons:

- low dynamic range, small mass fractions neglected
- slow for non-local simulations or high collisions frequency

- Grid Based Methods -

Examples:

 $\frac{\partial f(m)}{\partial t} =$ $+\frac{1}{2}\int_0^\infty f(m')\cdot f(m-m')\cdot$ $\cdot K(m',m-m') dm' - \int_0^\infty f(m') \cdot f(m) \cdot K(m,m') dm'$ $+\frac{1}{2}\iint_0^\infty f(m')\cdot f(m'')\cdot L(m',m'')\cdot$ $\cdot S(m,m',m'') dm' dm'' f(m') \cdot f(m) \cdot L(m,m') dm'$ $-\int_0^\infty f(m')\cdot f(m)\cdot L(m,m')\,dm'$

• Weidenschilling 1980, ...

- Nakagawa et al. 1981
- Dullemond et al. 2005
- Brauer et al. 2008, ...
- Birnstiel et al. 2009, ...
- Okuzumi et al. 2009, ...

Pros:

- high dynamic range
- implicit integration possible
- fast for multi dimensional simulations

Cons:

- porosity, charges, velocity distribution: only mean values
- diffusive method, problem with low number statistics

– Bouncing Barrier –

Zsom et al. 2010

- Fractal Growth -

- * Fractal particles could break through the drift barrier
- * Assumption: icy particles fragment only @ 35 m/s & no significant compaction occurs
- * Note: extremely low internal density

 $[g cm^{-3}]$

– Growth Barriers –

e.g. Birnstiel et al. (2011)

- Compact Growth -

take two grain sizes - calculate impact velocity - derive outcome

Windmark, Birnstiel et al. 2012a

- Compact Growth -

Windmark, Birnstiel et al. 2012b see also: Garaud et al., 2013

– Summary: Growth –

* Dust is ...

- ... sticking
- ... fragmenting
- ... bouncing
- ... cratering
- ... porous
- Several Barriers to Growth
 - ⇒ charging, bouncing, fragmentation, ...
 - ⇒ most can be overcome!

- Global Dust Evolution – I. Grain Sizes and Surface Densities

– Rules of Thumb –

* Rule 1: the larger the grain, ...

a) ... the larger its *inward drift velocity*b) ... the larger the *collision velocity*

* Rule 2:
$$\tau_{\text{grow}} \simeq \frac{1}{\epsilon \Omega}$$

Rule 3: particles drift to higher pressure

- * Rule 1: the larger the grain, ...
 - * ... the larger its *inward drift velocity*
 - * ... the larger the *turbulent collision velocity*

– Size Barriers –

$$a_{\rm frag} \simeq 0.06 \, \frac{\Sigma_{\rm g}}{\rho_{\rm s} \alpha} \, \frac{u_{\rm f}^2}{c_{\rm s}^2}$$

$$a_{\rm drift} \simeq rac{\Sigma_{\rm dust}}{\pi \, \rho_{\rm s}} rac{V_{\rm k}^2}{c_{\rm s}^2} \, \gamma^{-1}$$

See talks on observations by Luca Ricci & Laura Pérez

e.g., Birnstiel et al. 2012a

– Just Grain Growth –

– Just Grain Growth –

– Just Grain Growth –

- Grain Growth & Drift -

- Growth & Drift & Fragmentation -

From basic principles (Birnstiel et al. 2012):

$$\Sigma_{
m drift} \propto \sqrt{rac{\Sigma_{
m gas}}{r^2 \,\Omega_{
m k}}} \propto r^{-rac{3}{4}}$$

 $\Sigma_{
m frag} \propto rac{lpha_{
m t} \,\Omega_{
m k}}{v_{
m frag}^2 \,\gamma} \propto r^{-rac{3}{2}}$

Note

Not *directly* dependent on the (uncertain) drift rate, the relative importance is what counts!

From basic principles (Birnstiel et al. 2012):

$$\begin{split} & \Sigma_{\rm drift} & \propto \quad r^{-\frac{3}{4}} \leftarrow \text{outer or old disk} \\ & \Sigma_{\rm frag} & \propto \quad r^{-\frac{3}{2}} \leftarrow \text{inner disk: MMSN} \end{split}$$

From basic principles (Birnstiel et al. 2012):

 $\Sigma_{\rm drift} \propto r^{-\frac{3}{4}} \leftarrow \text{outer or old disk}$ $\Sigma_{\rm frag} \propto r^{-\frac{3}{2}} \leftarrow \text{inner disk: MMSN}$

Weidenschilling '77, Hayashi '81: *r* ^{-1.5} Chiang & Laughlin '13: *r* ^{-1.6}

 $\frac{3}{4}$

 $\Sigma_{
m drift} \propto r^{-1}$ $\Sigma_{
m frag} \propto r^{-1}$ \leftarrow outer or old disk $\frac{3}{2} \leftarrow \text{inner disk: MMSN}$

Weidenschilling '77, Hayashi '81: r^{-1.5} Chiang & Laughlin '13: r -1.6

– Issue of Timescales –

$$\tau_{\rm drift} \simeq \frac{r}{v_{\rm d}} \simeq \frac{1}{\operatorname{St} \gamma} \left(\frac{H}{r}\right)^{-2} \text{ orbits}$$

Particles drift inward in a few 100 orbits!

e.g. Klahr & Henning 1997 Kretke & Lin 2007 Brauer 2008

• • •

- Global Dust Evolution – II. Transition Disks

- Properties of Transition Disks -

- not all TDs have a TD-like SED
- transition disk fraction*: >1/3
- obs. median hole size: 35 AU
- wide range of accretion rates

* for mm-bright disks. See Andrews et al. 2011

- Photoevaporation -

Birnstiel, Andrews, Ercolano 2012

Brown et al. 2009

– Planets & Instabilities –

see also: Goldreich et al. H. Li et al., F. Masset et al., A. Crida et al., W. Lyra et al.,

•••

– Planets & Instabilities –

no trapping

see also: H. Li et al., F. Masset et al., A. Crida et al., G. Lesur et al., W. Lyra et al.,

– Dust Filtration –

see also: Rice et al. 2006 Zhu et al. 2012

– Planets & Instabilities –

Pinilla, Birnstiel et al. 2012

– Planets & Instabilities –

LkHa330	J 1604-2130	ННЗО
LkCa15	HD135344	SR21
0		0
MWC758	GMAur	J1633-2442
		٠
	•	•
SR24	UXTau	DoAr44
۰.		
	•	
WSB60	RYTau	
	• Willia	ms & Cieza 2011

- Asymmetries -

- Asymmetries -

- Asymmetries -

Birnstiel et al. 2013 $\Sigma \cdot x$ 60 20 0.8 0.6 Relative J2000 Declination (arcsec) 4 40 0.4 15 20 3.5 spectral index 0.2 y [AU] 0 0 10 -0.2 -20 -0.4 5 2.5 -0.6-40 -0.82 -60_{-60} 0 -20 20 40 60 -40 0 0.8 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 x [AU] Relative J2000 Right Ascension (arcsec) Collaboration with Li & Li

– Summary –

radial drift problem

- supported by some observations
- * not supported by others \rightarrow *L*. *Riccis Talk*
- time scale problem? missing physics?
- analytical grain sizes a(r)
 - larger grains in the inner regions
 - different physical cases: drift vs. fragmentation
 - observationally testable \rightarrow *L. Pérez Talk*
- * analytical surface densities $\Sigma_{dust}(r)$
 - $\Sigma_{\text{dust}} \neq \Sigma_{\text{gas}}$!
 - inner regions: MMSN/MMEN
 - outer regions: \rightarrow *L. Pérez Talk*
- Dust Filtration potentially explains features of transition disks
- Watch out for ALMA

Thanks for your attention!