Observational Constraints on the Process of Grain Growth and Evolution

> Laura Pérez Jansky Fellow, NRAO

Observational Constraints on the Process of Grain Growth and Evolution (inside protoplanetary disks)

Jansky Fellow, NRAO

From ISM Dust to Planetary Systems

Growth to µm-sizes: IR evidence

From IR spectroscopy of disks
 * e.g. 10 µm silicate feature

McClure's and Oliviera's talks

 However: IR emission traces warm disk "atmosphere"

Long-wavelength emission traces bulk of disk

(Generally) optically thin

* traces disk mass:

log κ [cm² g⁻¹]

 $F_{\nu} \approx \kappa(\nu) M_d B_{\nu}(T_d) d^{-2}$

 $\lambda [\mu m]$

- For long wavelengths/warm temperatures:
 - * Rayleigh-Jeans limit (hv<< kT)</p>

$$F_{\nu} \approx \frac{2k}{c^2} \nu^2 \kappa(\nu) \frac{M_d T_d}{d^2}$$

• At mm/cm wavelengths: * Dust opacity spectrum $\kappa(\nu) \propto \nu^{\beta}$

 $F_{
u} \propto
u^{lpha}$, with lpha = 2 + eta

Multiwavelength observations determine β

- Even if **absolute** opacity / temperature cannot be determined
- Multiwavelength observations in the optically thin regime can determine dust opacity spectrum

$$F_{\nu} \propto \nu^{\alpha}$$
, with $\alpha = 2 + \beta$ $\beta = \frac{\log_{10}(S_{\nu_1}/S_{\nu_2})}{\log_{10}(\nu_1/\nu_2)} - 2$

Multi-wavelength observations constrain β_{disks} < 1

What could make $\beta \neq \beta_{ISM}$? (and $\beta < 1$)

Grain Properties

- Dust composition very different from ISM
 - Draine et al. (2006)
 evaluated candidate
 materials: changes in
 composition cannot
 account for low β
- Or dust grains have a very "fluffy" grain structure
 - Natta et al. (2004)
 showed β < 1 for large
 fluffy grains: a_{max}>10cm

What could make $\beta \neq \beta_{ISM}$? (and $\beta < 1$)

Grain Properties

Emission Properties

- Dust composition very different from ISM
 - Draine et al. (2006)
 evaluated candidate
 materials: changes in
 composition cannot
 account for low β
- Or dust grains have a very "fluffy" grain structure
 - Natta et al. (2004)
 showed β < 1 for large
 fluffy grains: a_{max}>10cm

What could make $\beta \neq \beta_{ISM}$? (and $\beta < 1$)

Grain Properties Emission Properties Grain Growth Grains in disk are Dust composition very Dust emission in disks different from ISM is optically thick larger than ISM Draine et al. (2006) 2.5 As grains grow: UX Ori Testi et al. (2001) evaluated candidate their opacity \checkmark materials: changes in (mJy) 50 A opacity spectrum gets composition cannot ши 1.5 Ц shallow, making β small 30 AU account for low β 20 20 max. grain size: μm Or dust grains have a 10 μm ²-1 very "fluffy" grain [cm^{*} 10 cm 1 m structure 2 log Natta et al. (2004) showed β < 1 for large fluffy grains: a_{max}>10cm 10⁰ 10¹ 10² 10³ 10⁴ $\lambda [\mu m]$

0.15''x0.18''

Isella et al. (2010)

Observations at mm/cm wavelengths \rightarrow growth

OVRO/CARMA

JCMT/SMA

PdBI/IRAM

ATCA

Beckwith & Sargent (1990, 1991) Mannings & Sargent (1997,2000) Ricci et al. (2011a, 2012)

Mannings &WilnerEmerson (1994)Calvet ofAndrews &Testi etWilliams (2005,(2001,2)2007)Natta etLommen et al.Wilner(2007)RodmaRicci et al. (2011b)(2006)

Wilner et al. (2000) Calvet et al. (2002) Testi et al. (2001,2003) Natta et al. (2004) Wilner et al. (2005) Rodmann et al.

Dutrey et al. (1996) Natta et al. (2004) Schaefer et a (2009) Ricci et al. (2

Poster #46 (C. Wright) for HD 100546 - 3mm to 6cm SED - Temporal monitoring

These observations infer small β's Growth from ISM sizes (μm) to pebble sizes (cm)

Ricci et al. (2011b)

Grain growth vary with radius

T. Birnstiel's talk:

• Observational signature in $\beta(r)$

Radial variations of grain growth

Isella et al. (2010): two disks observed with CARMA in 1 and 3 mm bands

Radial variations of grain growth

 Guilloteau et al. (2011): Taurus survey with PdBI, also dual-wavelength obs.

Improve constraints on $\beta(R)$ by...

0.87 mm model residuals 1.33mm \ model esiduals 2.7 mm residuals mode ∆ð (''') mm \cap $\Delta \alpha$ (") CQ Tau Banzatti et al. (2011)

$\beta = \frac{\log_{10}(S_{\nu_1}/S_{\nu_2})}{\log_{10}(\nu_1/\nu_2)} - 2$

... particularly at long wavelengths

Increase wavelength coverage

Disks@EVLA collaboration

PI: Claire Chandler

- Determine prevalence of grain growth to cm-sized particles
 - 66 stars (ages ~ 1-10 Myr old)
 - Photometry (7mm-6cm) $\rightarrow \beta$

- Determine location of large grains in disks
 - Sub-sample imaged with ~0.2" res. at 7mm/1cm and 6cm

EVLA Key Science Project

Disks@EVLA Grain growth and sub-structure in protoplanetary disks

Disks@EVLA collaboration

PI: Claire Chandler

Constraints in Radial Variations of Grain Growth

 Increased wavelength coverage and sensitivity of observations

AS 209 disk; Pérez et al. (2012)

 Allow us to infer wavelengthdependent disk structure

Constraints in Radial Variations of Grain Growth

• Allow us to infer $\tau_{\lambda}(R) = \kappa_{\lambda} \times \Sigma(R)$

Constraints in Radial Variations of Grain Growth

Pérez et al. (2012)

Similar constraints in many different disks

Limit to particle growth: radial drift of solids

Compare with physical barriers to further growth: (T. Birnstiel's talk)

Similar constraints in many different disks

The future with ALMA and VLA

Significant improvement in current constraints

The future with ALMA and VLA

Relative J2000 Right Ascension (a

Azimuthal dust

trapping

Birnstiel et al.

(2013)

- Dust trapping mechanisms:
 - e.g. planet opening a gap
 - expect asymmetries
- Prediction: grain growth should occur within asymmetries
- Expect segregation of dust particle size: radially (Pinilla et al., 2012) and azimuthally (Birnstiel et al. 2013)
 - 2D constraints on $\beta(R)$

The future with ALMA and VLA

ALMA observations at 0.45 mm

(see A. Isella's talk)

 Observational test of particle trapping with the VLA

6hrs, CnB-config: 0.5"

8 hrs, BnA-config: 0.2"

And the future is here!

ALMA observations at 0.45 mm
 VLA observations at 9 mm

From ISM Dust to Planetary Systems

Summary

 Observational constraints of dust growth require multi-wavelength observations:

- * High angular resolution and high SNR
- * Future with new instruments like ALMA and VLA looks rock solid!

Protoplanetary disks (generally) have β < 1 at mm/cm wavelengths
 * Compelling evidence for grain growth in disks

Spatially resolved observational constraints inform us:

- * Disentangle optical depth effects from grain growth
- * Main limitation for further particle growth \rightarrow radial drift of solids

A way to overcome this problem: dust trapping of large particles
 * Radially, azimuthally

These predictions can be currently tested with ALMA and VLA

Similar constraints in many different disks

Different Compositions

Pollack et al. (1994) composition: 8% silicates, 30% organics, 62% water ice New Composition: 12% silicates, 44% organics, 44% water ice

Constraints on $\Sigma(\mathbf{r})$

Dust opacity slope relates to grain growth

Dust opacity spectral index β

Dust opacity spectral index β

Not influenced by a_{min}

 $a_{min} = 0.005 \ \mu \mathrm{m}_{\odot}$

- Influenced by:
 - Composition (slightly)
 - a_{max}
 - Grain size distribution slope n(a) ~ a^{-q}

Dust opacity spectral index β

- Not influenced by a_{min}
- Influenced by:
 - Composition
 - a_{max}
 - Grain size distribution slope n(a) ~ a^{-q}

$$n(a) \propto a^{-q}$$
 with $a_{min} = 0.005 \ \mu m, \ q = 3.5$

β as a proxy for a_{max}

- Not influenced by a_{min}
- Influenced by:
 - Composition
 - a_{max}
 - Grain size distribution slope n(a) ~ a^{-q}

