# FIRST HERSCHEL DETECTION OF CRYSTALLINE WATER ICE IN A T-TAURI STAR

Melissa K. McClure NSF Graduate Research Fellow University of Michigan

Nuria Calvet, Ted Bergin, Catherine Espaillat, Paola D'Alessio, Ben Sargent, Manoj Puravankara, Dan Watson, William Forrest, & Lucia Adame

2013 Rocks! From Dust to Rocks to Planets, Hawaii, 11 April 2013

### **EFFECTS OF ICE ON GRAIN GROWTH**

- ice-covered grains stickier than silicates  $\rightarrow$  100 times larger  $a_{max}$  than bare grains
- growth via vapor condensation up to
  10 cm sizes at snowline
- pressure traps at snowline lead to increase in local density, more grain growth



(Ormel et al. 2011, Kuroiwa & Sirono 2011, Ros & Johanson 2013 (in press), Kretke & Lin 2008)

## **OPEN QUESTIONS**

□ What is the abundance of ice in the disk?

□ (How) does ice enhance grain growth?

Correlations between dust content and disk structure?

□ Where is the snow line?

## DIRECT DETECTION OF WATER ICE

• Most ice bands (e.g. 3µm) in spectral regions typically sampling hot dust

• Seen in absorption through upper layers of edge-on disks  $(n_{ice} = 9x10^{-5} n_{H_2}, Pontoppidan$ et al. 2008)

• Herschel PACS ice should be seen in emission (cool midplane/warmer upper layers)



(Draine & Li 1984, Dorschner et al. 1995 + Jena database, Warren & Brandt 2008, Pontoppidan et al. 2005)

### **CRYSTALLINE VS. AMORPHOUS ICE**

- 63  $\mu$ m band is crystalline ice,  $\rightarrow$  heated > 130 K
- $\bullet$  different shapes from 44 63  $\mu m$  depending deposition temperature, heating/cooling history



## FIRST HERSCHEL ICE DETECTIONS!



| Similar stars                                 |                                                        |
|-----------------------------------------------|--------------------------------------------------------|
| T <sub>eff</sub>                              | 4350 – 4050 K<br>(solar type<br>precursors)            |
| L*                                            | 1.6 – 2.0 L <sub>☉</sub>                               |
| M                                             | 10 <sup>-7</sup> – 10 <sup>-8</sup> M <sub>☉</sub> /yr |
| i                                             | 40 – 50°                                               |
| Different disks                               |                                                        |
| Silicate profile 10µm →<br>maximum grain size |                                                        |
| FIR slope → degree of dust settling           |                                                        |

Binarity  $\rightarrow R_{disk}$ 

6

## **DISK STRUCTURE MODELS**



## **DISK STRUCTURE MODELS**

#### Heating:

- 1. Stellar irradiation
- 2. Accretion shock irradiation
- 3. Viscous dissipation

---- a<sub>visc</sub>



Temperature (K)

D'Alessio et al. 1998, 1998, 2001, 2004, 2006

## **DISK STRUCTURE MODELS**

#### Dust-gas ratio:

#### Well-mixed



D'Alessio et al. 1998, 1998, 2001, 2004, 2006

### **ICE-ENHANCED GRAIN GROWTH**



- IRS + PACS best-fit with condensation growth, n(a)~a<sup>2.0</sup>
- a<sub>max</sub> of ice grains ~60x larger than sil./carb.

Based on Figure 5, Kuroiwa & Sirono (2011)

### ICE-ENHANCED GRAIN GROWTH



- IRS + PACS best-fit with condensation growth, n(a)~a<sup>2.0</sup>
- a<sub>max</sub> of ice grains ~60x larger than sil./carb.

Based on Figure 5, Kuroiwa & Sirono (2011)

#### ICE-ENHANCED GRAIN GROWTH



- IRS + PACS best-fit with condensation growth, n(a)~a<sup>2.0</sup>
- a<sub>max</sub> of ice grains ~60x larger than sil./carb.

Based on Figure 5, Kuroiwa & Sirono (2011)

### CRYSTALLINE WATER ICE IN GQ LUP

Cannot fit Herschel & IRS/submm data with dry grains!



•  $f_{mass,ice} =$ 0.002\* $f_{mass,gas}$  $\rightarrow n_{ice} = 2x10^{-4} n_{H2}$ 

•350 Earth oceans, ¼ of total oxygen budget

Very little dust
settling: dust/gas =
4x10<sup>-3</sup> in upper layers

(McClure et al. 2012)

## WHERE IS THE EMITTING REGION?



## WHERE IS THE EMITTING REGION?



## WHERE IS THE EMITTING REGION?



#### **CRYSTALIZATION VIA DISK DYNAMICS?**

- T<sub>sub</sub> 130 K << region contributing to ice feature
- crystalline silicate ring in
   GQ Lup at 20 50 AU →
   in-situ heating (shocks,
   planetismal dynamics)
- silicate crystallization
   even could also heat
   outer regions to T>130 K

(Harker & Desch 2002, Voroboyev 2011)



## IMPLICATIONS OF ICE DETECTION

✓ Empirical evidence of ice condensation-enhanced grain growth

✓ Crystalline water ice implies thermal cycling:

- Local heating in the outer disk?
- Transport from snowline to outer disk?

 May see ice due to lack of dust settling; prevents UV from penetrating disk as deeply (less photodesorption)

 If disk is planetesimal-rich, could stir midplane, replenish ice in upper layers

#### IN PROGRESS: MODEL-INDEPENDENT ICE CONFIRMATION

- disk #3 truncated at 7 AU
- no 63 μm ice emission
- Even  $f_{mass, ice} = 0.002$ does not produce a feature
- → feature probes radii
   > atmospheric
   snowline



#### **DETECTION #2:** ICE IN A SETTLED DISK



• dust/gas =  $2 \times 10^{-6}$  in upper layers (=0.11 in midplane), so lack of settling not responsible for feature presence

 large (3µm) silicate grains, no signs of shocks (e.g. forsterite ring)

 seeing inner disk with such low epsilon, closer to snowline? 20

## **CONCLUSIONS & NEW QUESTIONS**

✓ First two Herschel detections of water ice in emission from T Tauri disks.

✓ Evidence for condensation-enhanced grain growth of ice grains in upper layers

Does ice enhance grain growth in the midplane as well? (need larger ice sample from Herschel)

□ Is the crystalline ice created at snowline (from condensation) or via local heating events in outer disk, with T>130K? (radial location of dust rings with ALMA)

□ How does the water vapor distribution compare with the ice? (need resolved line observations with ALMA)

#### **BUS#1: GRAIN SIZE DISTRIBUTIONS**

Test ice-enhanced grain growth with different distributions:  $n(a)da = a^p da$ ,  $0.005 \le a \le a_{max}$ 

![](_page_21_Figure_2.jpeg)

### BUS#2: A<sub>MAX</sub> AND CONDENSATION

![](_page_22_Figure_1.jpeg)

For ice  $a_{max} > ~60 \mu m$ , far-infrared SED model shape looks identical to ice-free models.