Radial Dust Migration in the TW Hydra protoplanetary disk

Sarah Maddison (Swinburne)

Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric Pantin (CEA-Paris), Jean-François Gonzalez (Lyon), David Wilner (Harvard CfA)

Theory of radial dust migration

Grains < 1 m migrate very fast – too rapid for planets to form! Yet they do.... (Weidenschilling 1977, Nakagawa 1986)

 ¹⁰⁵
 ¹⁰⁵
 ¹⁰⁵
 ¹⁰⁵
 ¹⁰⁵
 ¹⁰⁵
 ¹⁰⁷
 ¹⁰

Small particles coupled with gas, large particles decoupled

CENTRE FO

(Weidenschilling 1977)

Theory of radial dust migration

- Grains < 1 m migrate very fast too rapid for planets to form! Yet they do.... (Weidenschilling 1977, Nakagawa 1986) assuming MMSN 🏓
- Recent improvements:
 - depending on $\Sigma(r)$, T(r) and grain growth, can keep dust for longer than disk lifetime

(Youdin & Shu 2002, Dullemond & Dominik 2004, Birnstiel et al. 2009, Youdin 2011, Laibe et al. 2012)

Obs of radial dust migration

• Some 1.3–3 mm observations suggest larger grains centrally concentrated (Isella et al. 2010, Guilloteau et al. 2011)

 \rightarrow But generally lack observational constraints

TW Hydra ideal to study migration

SWIN BUR * NE *

CENTRE FOR STROPHYSICS AND IPERCOMPLITING

- Nearest T Tauri star, massive gas-rich disk
 - d = 56pc
 - age= 3-20 Myr (ave. 10 Myr)
- Disk very well studied:
 - discovered in scattered light (Krist et al. 2000)
 - dust continuum and molecular line images @ several λ
- Multi-epoch, multi- λ studies [sub-mm and mm]:
 - 870 μm @ SMA (Qi et al. 2004; Andrews et al. 2012)
 - 1.3 mm @ SMA/CARMA (Hughes et al. 2008; Isella et al. 2009)
 - 3 mm @ ATCA (Wilner et al. 2003)
 - 7 mm @ VLA (Wilner et al. 2000, Hughes et al. 2007)

• Extensive models exist (Thi et al. 2010, Gorti et al. 2011)

CENTRE FOR STROPHYSICS AND JPERCOMPUTING

TW Hya in HST/WFPC2 Krist et al. 2000

Disk pole-on!

(useful → use visibility profiles instead of images)
 R_{out} > 200 AU

Break in surface brightness ≈ 60 AU (1'')

colour change @ break(Roberge et al. 2005)

TW Hya in scattered light

CENTRE FOR TROPHYSICS ANE JPERCOMPUTING

Disk pole-on! (useful \rightarrow use visibility profiles instead of images) R_{out} > 200 AU (sensitivity limited) Break in surface brightness ≈ 60 AU (1'') colour change @ break(Roberge et al. 2005)

Recent HST obs dip in surface brightness ~80 AU and sharp cutoff ~150 AU

(Debes et al. submitted)

870 µm data & results

SWIN BUR NE *

(Andrews et al. 2012)

Emission @ 870 µm compact

- all emission within 60 AU
- sharp edge @ 60 AU provides better model fit

870 µm data & results

Emission @ 870 µm compact

- all emission within 60 AU
- sharp edge @ 60 AU provides better model fit

870 µm emission much more compact than scattered light or CO disk

> $- R_{out_870} \approx 60 \text{ AU}$ $- R_{out_scattered} > 200 \text{ AU}$ $- R_{out_CO} > 215 \text{ AU}$

6

Previous 7mm data & results

- Inner hole in disk
- Visibility null shows peaked emission @ 4 AU (≈ 1000 kλ)
- Incomplete UV coverage
 - no info < 200 kλ
 - no info on larger scale

(Hughes et al. 2007)

Filling the uv-plane at 7mm

CENTRE FC

Australia Telescope Compact Array

- 6 element array
- mm bands: 3, 7, 15 (and cm to 21cm)
- compact hybrid, extended 6km

7

Filling the uv-plane at 7mm

Putting it all together: 870µm vs 7mm

CENTRE FOR ASTROPHYSICS AND

Interpretation:

CENTRE FOR STROPHYSICS AND SUPERCOMPUTING

Surface brightness distribution model

<mark>870 μm</mark>

- R⁻¹ profile needed
- with sharp cutoff @ 60 AU ≥
- no need for significant emission outside
- → Same conclusions as Andrews et al. (2012) no surprise !

Interpretation:

Surface brightness distribution model

7 mm

- R⁻² profile required very peaked inside
- · R_{in} ≈ 4 AU needed
 → something 'halting' the migration
- nothing special @60 AU
- includes tail of faint extended emission (similar to scattered light)
 → R_{out} ≥ 200 AU

Interpretation:

CENTRE FOR STROPHYSICS ANE UPERCOMPUTING

Roughly we have:

- 7mm emission (large > mm grains): more peaked toward center, but extended to > 200 AU
- 870 µm emission (≈ 100 µm grains): emission with intermediate size & sharp cut-off
- Scattered light (µm-sized grains): extended over full disk
- \rightarrow Big particles inside, small particles outside...

- Q: Why 7mm + scattered light extended over full disk
 (≥ 200 AU) like CO gas disk, but not 870 µm?
 - Small grains (< 10 μm) present: won't emit significantly at 870 μm or 7 mm
 - How large a grain would it take to emit at 7 mm (between 60–200 AU) and not at 870 µm?

CENTRE FOR STROPHYSICS AND JPERCOMPUTING

- Q: Why 7mm + scattered light extended over full disk
 (≥ 200 AU) like CO gas disk, but not 870 µm?
 - Small grains (< 10 μm) present: won't emit significantly at 870 μm or 7 mm
 - How large a grain would it take to emit at 7 mm (between 60–200 AU) and not at 870 µm?

CENTRE FOR STROPHYSICS AND JPERCOMPUTING

Very small grains ($\leq 10 \ \mu m$)

- v. strongly coupled to gas
- agrees with scattered light
- don't emit much @ λ_{mm}

Big grains (≥ 10 cm)

- decoupled from gas
- similar extent 7mm emission
- remain undetected @ 870µm

≈ 100 µm−1mm optimal grain size for migration at R > 100 AU for this disk ??

(Laibe et al. 2012)

r

Concluding remarks: what we see

- Unambiguous evidence of radial migration in TW Hya ("easy" as it's nearby, good λ coverage). Clearly see:
 - Scattered light: μm grains well-coupled to extended gas . disk > 200 AU
 - . something funky at 60 AU...
 - 870 μm : 100 μm grains compact . disk within 60 AU
 - 7 mm: 10 cm grains very peaked
 - . grain pile-up 4 AU
 - . but extended tail with small grains > 200 AU
 - Dust @ 4 AU: something preventing inward migration
 - gas pressure max, hidden planet?
 - Transition @ 60 AU: "sweet spot" for rapid migration of 100µm – 1mm grains??

CENTRE FOR STROPHYSICS ANE JPERCOMPUTING

- Dust pile-up @ 4 AU:
 - something preventing inward migration
 - gas pressure max, hidden planet?
- Transition @ 60 AU:
 - "sweet spot" rapid migration for $100\mu m$ –1mm grains??
 - Messy mix of migration, growth, fragmentation
- ALMA to the rescue!
 - 3 mm ALMA will help understand dust size distribution
 - plus tons of fun for dynamic modellers ☺

CENTRE FOR ASTROPHYSICS AND SUPERCOMPUTING

Thermal dust at 7mm

Pascucci et al. (2012)

 \rightarrow free-free contributes @ 3.6 and 6 cm, but not 7 mm