Future Breakthroughs in Understanding the Fomalhaut Planetary System using ALMA

Paul Kalas

University of California, Berkeley

James Graham

University of California, Berkeley

Michael Fitzgerald (UCLA)

Mark Clampin (NASA GSFC)

Research funded by the NSF, NASA, AURA, and UC

April 12, 2013

Transformational Science with ALMA: From Dust to Rocks to Planets
Formation and Evolution of Planetary Systems

Very Brief Introduction

Kalas et al. 2013

Acke et al. 2012

Boley et al. 2012

- Fomalhaut is a 2 solar mass, 440 Myr-old, A star at 7.7 pc
- Dusty debris belt at 140 AU radius mapped from optical to millimeter wavelengths.
- Dust belt stellocentric offset (15 AU) and sharp edge indicates the existence of a perturbing planet.

Planetary System around Fomalhaut: Indirect Evidence

Kalas, Graham & Clampin

"A planetary system as the origin of structure in Fomalhaut's dust belt"

2005, Nature, Vol. 435, pp. 1067

- Dust belt not centered on the star and very sharp inner edge
- Explanation: Gravitational Perturbations by a Planet (Wyatt et al. 1999, Moro-Martin & Malhotra 2002)

Kalas, Graham & Clampin 2005

Why is Fomalhaut b optically bright? Circumplanetary disk

Kalas et al. 2008

Planet + 16 - 35 R_p rings For comparison, Callisto at ~27 Jupiter radii

or

Irregular Satellite Cloud Kennedy & Wyatt 2011

"The observations of the planet Fomalhaut b can be explained as scattered light from dust produced by the collisional decay of an irregular satellite swarm around a $^{\sim}10~M_{\oplus}$ planet. Such a swarm comprises about 5 Lunar masses worth of irregular satellites."

New results

(submitted to ApJ; http://arxiv.org/abs/1305.2222)

- Re-analysis of astrometry and error sources for 2004, 2006 ACS data, and 2010 STIS data.
- New Observations with HST/STIS obtained May 2012
 - 12 orbits, 12 roll angles
 - STIS coronagraphic wedge, blocks 2.5 arcsec
 - 0.05077"/pix, no filters, 0.2-1.0 micron
 - Use self-subtraction at multiple rolls, no PSF star

Tracking Fomalhaut b for eight years with Hubble

Kalas, Graham, Fitzgerald, & Clampin, ALMA April 2013 10.5 A DEC [arc sec] 9.5 8.5 7.8 8.8 9.8 20 A DEC [arc sec] -20-2020 ΔRA [arc sec]

Fomalhaut b's highly eccentric orbit is confirmed

Background star at expected location

MCMC method to sample posterior probability distribution for the orbital elements based on 4 epochs of astrometry

mpin, ALMA April 2013

New estimate for the Fomalhaut b orbital elements.

a = 177± 68 AU [Main Belt ~ 140 AU]

 $e = 0.8 \pm 0.1$ [Main Belt ~ 0.1]

 $q = 32 \pm 24 AU, Q = 322 \pm 119 AU$

 $I = 17^{\circ} \pm 12^{\circ}$

P ~ 2000 yr [Main Belt~1100-1400 yr]

Kalas et al. 2013, submitted to ApJ

Discovery of Extended Belt Halo

Extended halo of dust out to 209 AU, possibly >276 AU with bending morphology

Kalas et al. 2013, submitted to ApJ

Discovery of Main Belt 331° Gap

Sketch of the Fomalhaut system based on *observations*

What accounts for Fomalhaut b's high eccentricity?

Multi-planet system: Was Fomalhaut b scattered in, or out?

Fomalhaut b scattered in

Fomalhaut b's orbit is similar to a minority of Centaurs, such as 2010 TR19, which enters into our planetary system (crosses Neptune's orbit) on a very elliptical orbit.

Implication:

- (1) Fomalhaut b has a short-lived orbital configuration.
- (2) Fomalhaut b is very low-mass.

Fomalhaut b is a low-mass, Centaur-like object?

Question: How massive does a central object have to be so that an 30 R_J (0.014 AU) radius cloud is not disrupted by tidal shearing at periapse?

Answer: 5 x10²¹ kg ~500 km radius >Ceres, <Pluto

Mass of dust required consistent with a single cratering impact on the dwarf planet.

Fomalhaut b scattered out?

Example from Chatterjee et al. 2008

- Simulate 3-planet systems, variety of mass ratios, inclinations, separations
- Massive planets eject lesser mass planets.
- Mutual inclinations change
- Planet with outer final orbit tends to have higher eccentricity.

Does Fomalhaut b with a planet mass disrupt the belt if coplanar?

Belt edges erode, timescale depends on mass

Neptune mass after 300 kyr

Saturn after 75 kyr

Future Breakthroughs with ALMA

- Future = 2 year to 100 years from now
- Detect Fomalhaut b, understand its nature
- Map the azimuthal gap why is it there?
- Are there other azimuthal and radial variations?
- Map other dust belts in the system with indirect detections of other planets
- Detect changes in the system over decade timescales

Current ALMA 870 μ m Map (band 7)

Boley et al. 2012

- Northern half of Fomalhaut
- 140 min, 13/15 ant., 150 m
- rms ~ 60 microJy/beam
- 1.5" x 1.2" beam
- ~85 mJy total dust emission
- ~1.4 mJy excess from star
- Ring FWHM ~ 14 AU
- M_{mm} ~ 1.4 Moon
- Clumpy structure? TBD
- Excess emission north? yes

Future Breakthroughs with ALMA

• Detect Fomalhaut b, understand its nature, and then monitor for 30 years as it passes within or close to the main belt.

Deep ALMA images of Fomalhaut b also would include the azimuthal gap region

- If due to a planet within the belt (gap represents tadpole/horseshoe orbits of belt particles), then the gap will rotate 360°/1200 yr = 0.3°/yr
- Due to projection effects, the gap will move 0.4" in the sky plane in 10 years.

Future Breakthroughs with ALMA April 2013

- Are there other azimuthal and radial variations?
- Map other dust belts in the system with indirect detections of other planets
- Detect changes in the system over decade timescales

Potential transformational ALMA science

- Detect the satellite system of an extrasolar planet
- Observe the physics of its dynamical encounter with an extrasolar Kuiper Belt
- Map the dynamical details of a planet-planet scattering events
- Understand how planetary systems, including our own, rearrange their architectures at early epochs.

Conclusions

- Four epochs of HST astrometry (ACS+STIS) from 2004-2012 impose significant constraints on the orbital elements of Fomalhaut b
- The orbit is:
 - Eccentric: e=0.8±0.1
 - "Belt crossing" in projection
 - Periastron at 32±24 AU
 - Mutual inclination w.r.t. belt 17°± 12°
- The mass is between Ceres and 1 Jupiter
- The main belt has a 50 AU wide azimuthal gap