Debris disk scale heights

Margaret Pan (GSFC) and Hilke Schlichting (UCLA)

Nearby debris disks

Fuentes et al 09

27

28

26

R

25

24

Fomalhaut

Margaret Pan/2013 Rocks!

0.10

0.01

21

22

23

N(<R)

ullet steady state: $N(r) \propto r^{1-q}$

Margaret Pan/2013 Rocks!

- $r_B(r)$?
 - In general, r_B is a function of breaking strength and velocity

• simplest is
$$r_B \propto r$$
: $q = 7/2$

• but why should velocity be constant?

Velocity evolution

if q<4 , biggest bodies dominate stirring and damping: $R=r_{max}$, s=rsteady state means stirring = damping for all r \longrightarrow q = 3 + 4p

Self-consistent sizes and velocities

mass conservation velocity equilibrium collisions dynamical friction viscous stirring breaking strength

(power laws)

Margaret Pan/2013 Rocks!

Self-consistent sizes and velocities

Self-consistent sizes and velocities

N(r)∝r^{1-q} v(r)∝r^p **Q*(r)∝r**^γ

Size distributions steepen:

• $\gamma = 0$ (constant strength) : old (Dohnanyi) q = 7/2

new

q =

Steady-state cascades

		damping		
		mechanism	v(R)>v(r)	v(R) < v(r)
$v(r) > v_{ m esc}(r)$:	gravity	catastrophic	0.37	0.20
includes all	regime	collisions	3.26 > q > 3.11	3.21 > q > 3
bodies in		collisions with	$0 \leq p < 0.085$	$0 \leq p < 0.042$
cascade		equal-sized	$3 \leq q < 3.17$	$3 \leq q < 3.17$
		bodies		
	strength	catastrophic	0.090	0.054
	regime	collisions	$3.82>q\geq 3.65$	$3.78>q\geq 3.59$
		collisions with	p=1/2	1/4 > p > 0.16
		equal-sized	q=4	$4>q\geq 3.64$
		bodies		
		collisions with	p=1/2	
		smallest bodies	13/3 > q > 4	
$v(r) < v_{ m esc}(r)$:	gravity or	dynamical	p=-3/2	p = -3/4
bodies too	strength	friction	1 < q < 5	1 < q < 7
large for	regime			
cascade				

Dust production and scale height

- Scale height of disk ~ [random velocity]/[orbit velocity]
 - We expect scale height = power law of observing wavelength: ex. $v \propto r^{0.5}$ implies $h \propto \lambda^{0.5}$
 - Slope depends on bodies' internal strength (γ) , which can constrain internal structure and possibly history
 - Look for this at ~mm sizes

Signatures of planets

 Absolute value of scale height depends on stirring rate: ie, size and number of largest bodies
 ex. AU Mic-like system (M*=0.5Msun, ~MMoon in dust, a=40 AU, da=10 AU):

assume observed dust is in 1mm particles stirring by single $10M_{Earth}$ planet, eccentricity 0.03 damping by collisions with equal-sized bodies

scale height ~ 2 AU ($M_{planet}/10M_{Earth}$)(0.03/ecc) for 1mm bodies : angular size ~200 mas (ALMA Cycle 1 resolution ~100 mas)

similarly, scale height ~ 0.5 AU for 0.3mm bodies 1.5 AU for 10mm bodies

 ALMA Cycle 1 time for AU Mic approved (PI Meredith Hughes)

Signatures of planets

