Fukagawa et al. in prep.

ALMA Observations of the Asymmetrically Gapped Disk around HD 142527

M. Fukagawa¹, T. Tsukagoshi², M. Momose², K. Saigo³, N. Ohashi³, Y. Kitamura⁴, T. Muto⁶, H. Nomura⁷, H. Kobayashi⁵, T. Takeuchi⁸, E. Akiyama³, Y. Aso⁹, M. Honda¹⁰, H. Fujiwara³, S. Takahashi⁵, H. Shibai^{1,} S. Inutsuka⁵

¹Osaka Univ., ²Ibaraki Univ., ³NAOJ, ⁴ISAS/JAXA, ⁵Nagoya Univ., ⁶Kogakuin Univ., ⁷Kyoto Univ., ⁸TiTech, ⁹The Univ. of Tokyo, ¹⁰Kanagawa Univ.

HD 142527

- Herbig Fe star (F6, T_{eff} = 6250 K), D ~ 140 pc
- $L = 20 L_{\odot} M = 2.2 M_{\odot} Age \sim 5 Myr$ (Verhoeff et al. 2011)
- Abundant IR excess $(L_{IR} \sim L_*)$
- Imaging one of the peculiar disks

1.6 µm, scattered light (Fukagawa et al. 2006)

24.5 µm, thermal (Fujiwara et al. 2006)

The Disk

1. Inner disk (r < 30 AU)

 High crystallinity, large grains (Bouwman et al. 2001, van Boekel 2004)

2. Gap (∆*r* ~ 100 AU)

- Gap seems too wide to be affected by the stellar companion inferred at ~12 AU (Biller+ 2012)
- Outer disk (r > 100 AU)
 Multiple spirals + an outer arm

The Disk

1. Inner disk (r < 30 AU)

High crystallinity, large grains (Bouwman et al. 2001, van Boekel 2004)

2. Gap (∆*r* ~ 100 AU)

3. Outer disk (r > 100 AU)

Gap seems too wide to be affected by the stellar companion inferred at ~12 AU (Biller+ 2012)

The Disk

1. Inner disk (r < 30 AU)

 High crystallinity, large grains (Bouwman et al. 2001, van Boekel 2004)

- 2. Gap (Δ*r* ~ 100 AU)
 - Gap seems too wide to be affected by the stellar companion inferred at ~12 AU (Biller+ 2012)
- Outer disk (r > 100 AU)
 Multiple spirals + an outer arm

L', H2(1-0)S(1), Ks (Casassus et al. 2012)

L' band (3.8 µm) (Rameau et al. 2012)

Another Motivation toward ALMA

 Strong non-axisymmetry: "horseshoe" disk

 (1) Very wide (~1") cavity
 (2) Enhancement in the northern area
 → One of the best protoplanetary disks for ALMA early science

Contours: SMA 880 μm continuum (from 2σ, spacing of 2σ) (Ohashi 2008)

Observations

Band 7 (336 GHz), covering ¹³CO(J=3-2), C¹⁸O(J=3-2)

- Optically thinner lines than ¹²CO
- 20–26 12-m antennas
- Beam size = 0.5" x 0.4" (70 x 60 AU)
- Effective velocity resolution ~0.2 km/s (Channel width of 0.11 km/s)

	Continuum	13CO (3-2)	C18O (3-2)
Beam size	0.50" x 0.41"	0.52" x 0.43"	0.53" x 0.43"
Rms noise (mJy/beam)	0.2	10 (per channel)	11 (per channel)

Continuum at 340 GHz

Outer "Horseshoe" : N-S brightness contrast ~ 25
 Peak = 280 mJy/beam, T_b ~ 22 K (!)
 Inner disk + gap (non-detection) + outer disk

Molecular Linesintegrated Ivelocity

Integrated I: ring-like distribution

 Velocity field follows Keplerian rotation; (major-axis PA = −19°, i = 27° ± 2° for M_{*} = 2.2 M_☉) How dense the disk can be in the northern area of the horseshoe?

T_b for ¹³CO(*J*=3-2)

¹³CO emission should be optically thick

 ¹³CO/C¹⁸O << canonical value (~7; ISM, HD 163296; Qi et al. 2011)

• $T_b(^{13}CO) - T_b(C^{18}O) = 5 \text{ K}$; in N, 130 < r < 300 AU

 \rightarrow T_b reflects temperature, not column density

Surface Density of the Horseshoe

How massive does the disk at the horseshoe peak?

- Peak T_b = 36 K of ¹³CO provides the upper bound for temperature of dust grains emitting in submm
 - ¹³CO should be located in the upper layer
- → Σ (dust) = 0.22 g cm⁻² at the peak → Σ (dust) = 0.087 g cm⁻² at 161 AU, azimuthally-averaged
- ightarrow M_{disk} = 0.08 M $_{\odot}$
 - T = const. = 36 K
 - opacity = 0.034 cm²/g (β = 1.0)
 - optical depth estimated for 36 K

Structure

 Radial brightness distribution is well represented by Gaussian

 \rightarrow ring, torus...

Sharp outer/inner edges in transitional disks (e.g., Isella et al. 2010, Andrews et al. 2011, Tang et al. 2012)

FWHM in r is narrower at the northern horseshoe peak

• $\Delta r = 50 \text{ AU} \sim 2 \times \text{scale height (36 K)}$ after beam deconvolution

Structure

 Anti-correlation between the peak intensity versus peak position for the fitted Gaussian

 → Not an eccentric disk
 (higher density expected at apastron)

 "Ring + gaseous floor" (¹³CO out to ~450 AU
 ↔ ~300 AU for dust)

 $\Delta \mathsf{PA}$

Enhancement toward North: Implications

Discussion using the *lower limit* of Σ

- 1. Self-gravitating?
 - Gas-to-dust = 100

• Toomre Q for a Keplerian disk \rightarrow Q ~ 3 for Σ = 8.7 g cm⁻² azimuthally-averaged (160AU)

 \rightarrow Q ~ 1 for Σ = 22 g cm⁻² at the density peak

...Gravitationally unstable

Enhancement toward North: Implications

- 2. Dust accumulation that lowers gas-to-dust
 - Gas-to-dust < 100, at least ~10 makes Q >> 1
 - Particle trapping at pressure maxima Instability caused in a disk with Q >>1
 e.g., large-scale vortices (e.g., Birnstiel et al. 2013, Ataiee et al. 2013, talk by T. Birnstiel, F. Menard)
 - Constraints based on Rayleigh criterion

 $\Omega \propto r^{-n}$, *n* should be < 2

In either case, the enormous pile-up of disk material beyond 100 AU from the star \rightarrow planet forming site?

Uniqueness?

Azimuthal asymmetry; x 10 compared to other ring-like disks

(x 100 for the "peanut"; talk by N. van der Marel)

Relatively massive disk

(>~4% of the stellar mass)

J1604-2130 AB Aur (Mathews et al. 2012) (Tang et al. 2012)

etc...

- ALMA observations revealed the horseshoe-shaped disk which is surprisingly bright at its northern area in dust emission at 336 GHz.
- To evaluate the density there, it is essential to constrain the grain temperature, which was estimated from the ¹³CO (*J* = 3—2) line data.
- The peak surface density was then calculated as 21 g cm⁻² assuming the canonical gas-to-dust mass ratio of 100. This indeed implies that the region is locally too massive to stand against self-gravity.
- Alternatively, accumulation of grains is expected to lower the gas-to-dust ratio by one order of magnitude or more and make the region stable against dynamical gravitational collapse.