Mapping of CO and HCN in Neptune's stratosphere

A. Moullet, M. Gurwell (Center for Astrophysics), M. Hofstadter (JPL), E. Lellouch, R. Moreno (LESIA), B. Butler (NRAO)
Structure of CO and HCN in Neptune's upper atmosphere

CO

- Abundance \(\sim 1 \text{ ppm} \) in upper troposphere and stratosphere
- Increase of abundance with altitude
- Higher abundance than expected from equilibrium with \(\text{CH}_4/\text{H}_2\text{O} \)

HCN

- Abundance \(\sim 1 \text{ ppb} \) in stratosphere
- Formed by \(\text{N}, \text{N}^+, \text{and methane products} \)
- Condensation cold trap at tropopause

Need for a significant supply source

Image www.nasa.gov
Sources of CO and HCN

Internal

- vigorous upward convection of CO and \(\text{N}_2 \).
- \(\text{N}_2 \) dissociated in the stratosphere to form HCN.

External

- Triton, comet impacts

Understanding the sources of CO/HCN provides indications on the global structure and chemistry of the atmosphere.
Rotational lines of CO and HCN

- mm/submm lines profile indicate temperature/abundance vertical profile (T/q)

- pressure broadened wide absorption wings from troposphere (CO)
- thermal broadened emission core from stratosphere (HCN and CO)

- emission spatially not resolved by single-dish instruments

CO(3-2) line measured by Hesman et al. (2007) at JCMT
SMA observations

- Submillimeter Array (SMA) : 8 antennas of 6 m diameter on Mauna Kea, Hawaii
- 3 nights in September 2010

- HCN(4-3) and CO(3-2) transitions (354.8 and 345.8 GHz), 0.4 MHz spectral resolution
- Spatial resolution of ~0.75” reached in extended configuration (Neptune's disk ~ 2.3”)

- Fourier-plane visibilities undergo an inverse Fourier transform to obtain maps
Continuum emission map at 354.5 GHz

- Continuum collision-induced emission from H$_2$-H$_2$ and He-H$_2$
- Sounds troposphere (~1 bar)
- Observed distribution close to continuum model, radially symmetric

Flux map (in Jy/beam) with 20 σ contours

Sounded altitudes

North pole direction

Equator

Neptune's disk (1 bar)

SMA synthesized beam
CO(3-2) line maps

- Line integrated over 4 GHz
- Core (stratospheric) and wings (tropospheric) emission maps
- No significant spatial variations, except limb-darkening

Disk-integrated spectra (baselines average)

Wings emission map (troposphere) 20 σ contours

Core emission map (stratosphere) 10 σ contours
- Modeling assuming thermal profile (Lellouch et al., 2010)
- Data consistent with horizontally constant CO abundance
- Best results with:
 0.7 +/- 0.05 ppm for pressures above 10 mbar (troposphere)
 0.95 +/- 0.05 ppm for pressures below 10 mbar (stratosphere)
- Modeling assuming thermal profile (Lellouch et al., 2010)

- Data consistent with **horizontally constant CO abundance**

- Best results with:
 - 0.7 +/- 0.05 ppm for pressures above 10 mbar (troposphere)
 - 0.95 +/- 0.05 ppm for pressures below 10 mbar (stratosphere)

Abundance increase with altitude supports partial exogenic source
HCN(4-3) line map

- Map integrated over the emission line (~ 8 MHz)
- Global ring shape
- At the limb, decrease of line emission by a factor ~2 in South East region
- Modeling with constant abundance in the upper stratosphere (above 0.3 mbar)
- Modeling with constant abundance in the upper stratosphere (above 0.3 mbar)
- Ring shape produced by opacity increase with airmass
- Modeling with constant abundance in the upper stratosphere (above 0.3 mbar)
- Ring shape produced by opacity increase with airmass
- Best results with $\sim 1.9+/-0.2$ ppb everywhere, except in a spatially limited region
- Impossible to further distinguish models due to limited spatial resolution
Possible interpretations

HCN emission minimum located near Southern pole region (summer), where active convection occurs, on morning side.

- Increased photolysis in the summer hemisphere?

- Seasonal transport?

- More condensation on the morning side?

Mid-IR photometry obtained by Orton et al., (2009).
Summary

- Mapping of CO and HCN lines in Neptune's troposphere and stratosphere with 0.75” spatial resolution

- **CO uniform horizontal distribution**, abundance increase from troposphere to stratosphere: supports partial exogenous source

- **HCN dip in the South East region.** Process not identified. Abundance ~1.9 ppb elsewhere.

Need for better resolved observations with ALMA (Cycle 1). Band 7, baselines ~700 m: ~0.3” resolution