Tuna Lunch

June 2, 2009 – Charlottesville, Va.

NRAO and the AS2010

Overview of the ALMA submission to the DS2010 Instrumentation Panel.

A. Wootten (Project Scientist/NA)
The ALMA Partnership

- ALMA is a global partnership in astronomy to deliver a truly transformational instrument
 - North America (US, Canada, Taiwan (NSC))
 - Europe (via ESO)
 - East Asia (Japan, Taiwan (AS))
- Located on the Chajnantor plain of the Chilean Andes at 16500’
- ALMA will be operated as a single Observatory with scientific access via regional centers
 - North American ALMA Science Center (NAASC) is in Charlottesville
- The NSB approved budget for ALMA is $499.3M
 - Total Global Budget ~$1.3B
Millimeter/submillimeter photons are the most abundant photons in the cosmic background, and in the spectrum of the Milky Way and most spiral galaxies.

Most important component is the 3K Cosmic Microwave Background (CMB)

After the CMB, the strongest component is the CIB/THz component, which carries most of the remaining radiative energy in the Universe, and 40% of that in for instance the Milky Way Galaxy.

ALMA range--wavelengths from 1cm to \(~0.3\) mm, covers both components to the extent the atmosphere of the Earth allows.

CIB is a focus of THz astronomy. How much power is in spectral lines?
Atacama Large Millimeter/submillimeter Array

Is an international astronomy facility, a partnership between Europe (32.5%), North America (32.5%) and East Asia (25%), in cooperation with Chile (10%) through agreements reached in 2003 and updated in 2006. ALMA is operated on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) with National Science Foundation funding.

>50 × 12-m telescopes
+ ACA: 12 × 7-m + 4 × 12-m

Llano Chajnantor
Northern Chile
at 5000m elevation

Inauguration 2012
(Early Science in 2011)
ALMA – Major Elements

Fifteen+ antennas now in Chile
Fourth ALMA Production Antenna Jun 4

- Partners: US (NSF/NRAO)+Canada (NRC)+Taiwan (NSC) – ESO
 Chile – Japan (NINS)+Taiwan (AS)

Action Sites

- **Array Operations Site** – AOS 5000m (High Andes)
- **Operations Support Facility** – OSF 2900m (Upslope Andes)
- **Santiago Central Offices** – SCO
- **ALMA Regional Centers** – ARCs + ARC nodes
- **ALMA Test Facility** – Near Very Large Array, NM closed
- Astronomers do not travel to telescope (safety!)—data flows to them through SCO and ARCs
- During full operation, the estimated flow into archive ~ 100 Tbytes per year
- Dataset: proposal, u-v data, a reference image with pipeline processing history, calibration data… modern radioastronomy
- Over the first decade of ALMA we have the opportunity to extend its frequency coverage, collecting area and resolution

Photo H. Heyer (ESO).

Fifteen+ antennas now in Chile
Fourth ALMA Production Antenna Jun 4

Photo H. Heyer (ESO).
ALMA Phases

• Construction now declining, Operations continuing rampup.
• Continued Development was featured in the Ops Plan, reviewed by Intl Committee and by NSF Committee then adopted by Board.
• No funding agency funds a ‘pig in a poke’, the character of development must be defined. This is up to the ALMA Board, now pondering.
How can I find the ALMA Site?

Paranal
La Serena
Santiago
Eleven Years of Data

PWV < 200 µm for ~10% of time
Can be better in winter

Chajnantor: An Excellent Site for THz Astronomy

Data courtesy S. Radford
APEX

- APEX is a slightly modified copy of the ALMA prototype built by Vertex.
- It has operated on the ALMA site since 2005.
- The surface is $\sim 17 \, \mu m$ and has remained stable.
- Observations have been published which were made in the 1.4 THz atmospheric window.

- ALMA has an excellent and proven site for THz astronomy
- ALMA has two prototype antennas; a copy of one is doing THz astronomy
 - Bids now being considered for prototypes!
- What are ALMA’s science goals and how do they drive development?
ALMA Science Requirements

Project scientist ensures ALMA meets three “level I” science goals:

- Spectral line CO/C$^+$ in $z=3$ MWG < 24hrs
- resolve ProtoPlanetaryDisks at 150 pc – gas/dust/fields
- Precise 0.1” imaging above 0.1% peak

- High Fidelity Imaging.
- Routine sub-mJy Continuum / mK Spectral Sensitivity.
- Wideband Frequency Coverage.
- Wide Field Imaging Mosaicing.
- Submillimeter Receiver System (..& site..).
- Full Polarization Capability.
- System Flexibility (hardware/software).
Technical Specifications

- 50 12-m antennas, 12 7-m antennas, 4 TP 12m antennas at 5000 m altitude site.
 - 14 antennas ‘descoped’ during rebaselining. Only ~47 operational at a given time!
- Surface accuracy ±25 µm, 0.6” reference pointing in 9m/s wind, 2” absolute pointing all -sky. First three antennas meet these; accurate to <±16 µm most conditions
- Array configurations between 150m to ~15 -18km.
- 10 bands in 31-950 GHz + 183 GHz WVR. Only 7 included in construction phase.
 - 84-116 GHz “3”
 - 125-169 GHz “4”
 - 163-211 GHz “5” 6 rx only, dual polzn
 - 211-275 GHz “6”
 - 275-373 GHz “7”
 - 385-500 GHz “8”
 - 602-720 GHz “9”
 - 787-950 GHz “10” initially partially populated
- 8 GHz BW, dual polarization.
- Flux sensitivity 0.2 mJy in 1 min at 345 GHz (median cond.).
- Interferometry, mosaicing & total-power observing but no VLB capability
- Correlator: 4096 channels/IF (multi-IF), full Stokes.
- Data rate: 6MB/s average; peak 60 MB/s.
- All data archived (raw + images), pipeline processing.

Tuna Lunch
ALMA Bands and Transparency

7 Bands in Construction Project—3 ‘descoped’

- B1
- B2
- B3
- B4
- B5
- B6
- B7
- B8
- B9
- B10

0.5mm PWV ν<950 GHz

0.2mm PWV ν>950 GHz
With these specifications, ALMA improves

- Existing sensitivity, by about two orders of magnitude
 - Best accessible site on Earth
 - Highest performance receivers available
 - Enormous collecting area (1.6 acres, or >6600 m²)
- Resolution, by nearly two orders of magnitude
 - Not only is the site high and dry but it is big! 18km baselines or longer may be accommodated.
- Wavelength Coverage, by a factor of two or more
 - Take advantage of the site by covering all atmospheric windows with >50% transmission above 30 GHz
- Bandwidth, by a factor of a few
 - Correlator processes 16 GHz or 8 GHz times two polarizations
- Scientific discovery parameter space is greatly expanded!
Development Items for ALMA 2010-2020

• Science clearly benefits from improving
 – Throughput (collecting area, instantaneous bandwidth, uv coverage)
 – Bandwidth (all accessible frequencies)
 – Resolution

• Proposal: First implement unfunded construction scope
 – Unbuilt antennas (while production line remains open)
 – Unbuilt receivers (and consider bands not contemplated prior)
 – Unimplemented VLB capability

• Many other possibilities
 – ASAC Report
 – Correlator upgrade
 – Longer connected baselines
 – Are any science goals endangered to whose realization development could contribute?
APPENDIX A: Interdependence of development issues

<table>
<thead>
<tr>
<th>Performance to be improved</th>
<th>Development item</th>
<th>Degree of improvement</th>
<th>Speed/technical difficulty/cost</th>
<th>Beneficial for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>More antenna</td>
<td>add 3 antennas 10%</td>
<td>quick</td>
<td>expensive</td>
</tr>
<tr>
<td></td>
<td>New digital system/EOC receiver development (linear noise)</td>
<td>10 - 20%</td>
<td>moderate</td>
<td>expensive</td>
</tr>
<tr>
<td>Angular resolution</td>
<td>Longer baseline</td>
<td>a factor of a few</td>
<td>easy/quick but phase stability issues (including atmospheric and LO reference) should be improved as well</td>
<td>expensive</td>
</tr>
<tr>
<td>VISI</td>
<td>orders of magnitude</td>
<td>easy/quick?</td>
<td>cheap</td>
<td>Gill Am and very limited bright and compact sources</td>
</tr>
<tr>
<td>Field of view</td>
<td>Multi-beam receiver</td>
<td>a factor of a few</td>
<td>long/short? Ensemble correlator power is also required?</td>
<td>expensive</td>
</tr>
<tr>
<td></td>
<td>Under-illuminated feed</td>
<td>a factor of a few</td>
<td>moderate</td>
<td>moderate</td>
</tr>
<tr>
<td>Spectral coverage</td>
<td>Band 1</td>
<td>medium-term</td>
<td>moderate</td>
<td>SR, refractive lens, protostellar disks, stellar</td>
</tr>
<tr>
<td></td>
<td>Band 2</td>
<td>medium-term</td>
<td>moderate</td>
<td>SR, refractive lens, protostellar disks, stellar</td>
</tr>
<tr>
<td></td>
<td>Band 3</td>
<td>medium-term</td>
<td>moderate</td>
<td>Redshifted lines, protostellar, atmosphere, redshifted stellar lines, galaxies</td>
</tr>
<tr>
<td></td>
<td>Band 4</td>
<td>long-term</td>
<td>moderate?</td>
<td>Redshifted stellar lines, galaxies</td>
</tr>
<tr>
<td>Simultaneous frequency coverage</td>
<td>Multi-frequency feed</td>
<td>a factor of a few</td>
<td>moderate?</td>
<td>Redshifted stellar lines, galaxies</td>
</tr>
<tr>
<td></td>
<td>Receiver development (water frequency coverage)</td>
<td>a factor of a few</td>
<td>moderate?</td>
<td>Redshifted stellar lines, galaxies</td>
</tr>
<tr>
<td>Imaging quality</td>
<td>More antennas</td>
<td>add 3 antennas 10%</td>
<td>quick</td>
<td>expensive</td>
</tr>
<tr>
<td></td>
<td>More 7m antennas</td>
<td>?</td>
<td>moderate</td>
<td>expensive</td>
</tr>
<tr>
<td>Accuracy of amplitude</td>
<td>Software development</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td></td>
<td>Improved calibration devices</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>Accuracy of phase correction</td>
<td>Improved atmospheric correction</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td></td>
<td>Accuracy of polarisation</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
</tbody>
</table>
Science Goal I: Detect CO or C+ in MWG

- At $z=2$ this can be done for both lines.
- At $z=3$ this becomes difficult for the CO line.
- But notice the ‘tall pole’ atomic lines in the THz region, including C+.
Science Goal I: Detect CO or C+ in MWG

Viable; depends on exact redshift and transparency window lineup. For MW galaxy, detection takes a few hours. Note that other lines on the plot, from luminous galaxies in the local Universe, may be detected, some at very high z. ALMA allows us to see the redshifted ‘tall pole’ THz lines to very high z. ALMA could track the very creation of the Universe’s ‘metals’.
Birth of Stars and Planets
Evolutionary Sequence—
Molecular Cloud Core to Protostar (10^4 yrs) to
Protoplanetary Disk (to $\sim 10^6$ yrs) to
Debris Disk (to 10^9 yrs)

Wyatt et al. 2005
Reid et al. 2008

Vega Dust Disk
Highest Level Science Goals

Bilateral Agreement Annex B:

“ALMA’s third level-1 science requirement:
The ability to provide precise images at an angular resolution of 0.1". Here the term *precise image* means accurately representing the sky brightness at all points where the brightness is greater than 0.1% of the peak image brightness. This requirement applies to all sources visible to ALMA that transit at an elevation greater than 20 degrees. These requirements drive the technical specifications of ALMA.”
2005 NRC Panel:

- “Two of the Level-1 science goals, involving sensitivity and high-contrast imaging of protostellar disks, will not be met with either a 40- or a 50-antenna array. It is not clear if the third requirement, on dynamic range, can be met with a 40-antenna array even if extremely long integrations are allowed for.

- “Speed, image fidelity, mosaicing ability, and point-source sensitivity will all be affected if the ALMA array is descoped. The severest degradation is in image fidelity, which will be reduced by factors of 2 and 3 with descopes to 50 and 40 antennas, respectively.

- “Despite not achieving the level-1 requirements, a descoped array with 50 or 40 antennas would still be capable of producing transformational results, particularly in advancing understanding of the youngest galaxies in the universe, how the majority of galaxies evolved, and the structure of protoplanetary disks, and would warrant continued support by the United States.”

Holdaway memo ‘Image Quality as a Function of the Number of Antennas in ALMA’
How many Antennas?

- NRC Committee: At least 54, 50 operating.
- Holdaway: We perform simulations of ALMA data for array configurations with the number of antennas (N_a) ranging from 40, 43, 46, 50, and 56, adding only thermal noise. For very high SNR observations (i.e., 10000:1), the dynamic range shows a strong dependence upon N_a, with 56 antennas yielding far superior images to 40 antennas. For high SNR (i.e., 3000:1), the dynamic range shows only a modest dependence on N_a, and at 1000:1 SNR and below, all arrays are basically able to achieve the theoretical dynamic range. However, even though all configurations seem to be able to achieve thermal noise limited imaging from the perspective of dynamic range, configurations with fewer antennas provide image reconstructions with on-source errors which are far from the theoretical maximum. For these simulations, the 56 element configuration produces images which have nearly thermal noise limited fidelity up to the very highest SNR, where at last deconvolution errors begin to limit the image quality instead of thermal noise.

- Conclusion: 4-7 additional antennas could enable meeting goals 2 and 3.

Figure 8: For the M31 model imaged with MEM, the 0.01 image fidelity as a function of SNR for 56, 50, 46, and 40 antenna configurations.
Table 2. Summary of ALMA Receivers

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency (GHz)</th>
<th>T^b_{SSB} (K)</th>
<th>Configuration of Receiver</th>
<th>Continuum c ΔS (mJyc)</th>
<th>Spectral Line d ΔS (mJy)</th>
<th>Beam e (arcsec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>31 - 45</td>
<td>17</td>
<td>HEMT</td>
<td>0.03 (0.023)</td>
<td>8.5</td>
<td>0.12</td>
</tr>
<tr>
<td>2</td>
<td>67 - 90</td>
<td>30</td>
<td>HEMT</td>
<td>0.04 (0.032)</td>
<td>8.5</td>
<td>0.06</td>
</tr>
<tr>
<td>3</td>
<td>84 - 116</td>
<td>41</td>
<td>2SB</td>
<td>0.040 (0.03)</td>
<td>7.0</td>
<td>0.038</td>
</tr>
<tr>
<td>4</td>
<td>125 - 163</td>
<td>51</td>
<td>2SB</td>
<td>0.06 (.046)</td>
<td>7.1</td>
<td>0.030</td>
</tr>
<tr>
<td>5</td>
<td>163 - 211</td>
<td>65</td>
<td>2SB</td>
<td>0.075 (0.059)</td>
<td>4.9</td>
<td>0.021</td>
</tr>
<tr>
<td>6</td>
<td>211 - 275</td>
<td>83</td>
<td>2SB</td>
<td>0.10 (0.075)</td>
<td>10.2</td>
<td>0.018</td>
</tr>
<tr>
<td>7</td>
<td>275 - 373</td>
<td>147</td>
<td>2SB</td>
<td>0.18 (0.14)</td>
<td>16.3</td>
<td>0.012</td>
</tr>
<tr>
<td>8</td>
<td>385 - 500</td>
<td>196</td>
<td>2SB</td>
<td>0.28 (0.02)</td>
<td>22.6</td>
<td>0.010</td>
</tr>
<tr>
<td>9</td>
<td>602 - 720</td>
<td>175f</td>
<td>DSB</td>
<td>0.62 (0.49)</td>
<td>62.1</td>
<td>0.006</td>
</tr>
<tr>
<td>10</td>
<td>787 - 950</td>
<td>230f</td>
<td>DSB</td>
<td>1.1 (0.84)</td>
<td>56</td>
<td>0.005</td>
</tr>
<tr>
<td>11</td>
<td>1255 - 1565</td>
<td>375f</td>
<td>DSB</td>
<td>11 (9)</td>
<td>450</td>
<td>0.005</td>
</tr>
</tbody>
</table>
31-45 GHz Astronomy

- Redshifted CO lines
- Sunyaev-Zeldovich Effect
- Excellent probe of very dense dust disks
 - debris disks
 - chemistry of heavy organic species, carbon-chains, anions
 - free-free emission from jets/outflows
 - measuring B-field using Zeeman effect (CCS)
 - spinning dust grains
 - dust chemistry in AGB envelopes
 - masers
67-94 GHz Astronomy

- 67-94 GHz: Resonance lines of abundant molecules
 - HCO\(^+\), HCN, HNC, N\(_2\)H\(^+\), H\(_2\)CO
- Resonance lines of their deuterium isotopomers
 - DCO\(^+\), DCN, DNC, N\(_2\)D\(^+\), NH\(_2\)D, NHD\(_2\), HDO, CH\(_2\)D\(^+\)
- Underutilized band but rx technology straightforward
- Excellent probe of very dense dust disks
- Comets--PD zone often resolved, no missing flux.
- Redshifted CO, near and far
Extragalactic Targets

- Redshifted CO (including Milky Way at $z \approx 3$)
- LIRGs $0.2 < z < 0.7$
 - $L_{\text{IR}} \approx 5 L_{\text{IR} \text{(MW)}} \Rightarrow L(\text{CO})_{1-0} \approx 5 L(\text{CO})_{1-0, \text{MW}}$
 - $T_{\text{sys}} \approx 250$ K SSB; Jy/K ≈ 0.8
 - 1σ 8 hrs 1mK 75 km/s (10μK km/s)
 - Could probably measure CO in \approxtwo dozen MIPS-detected LIRGS in HDF falling in this redshift range
 - ‘Age’ 7.4-11.3 Gyr; Scale 24-50 kpc/beam
- Sunyaev-Zeldovich Effect
Examples

- MIPS4644, $z=0.67$
- Note ALMA synthesized beam
Examples

- MIPS15942, z=0.44
67-94 GHz Astronomy

• 67-94 GHz: Resonance lines of abundant molecules
 – HCO$, HCN, HNC, N$_2H, H_2$CO
• Resonance lines of their deuterium isotopomers
 – DCO$, DCN, DNC, N$_2D, NH_2D, NHD_2$, HDO, CH$_2D
• Underutilized band but rx technology straightforward
• Excellent probe of very dense dust disks
• Comets--PD zone often resolved, no missing flux.
 • Redshifted CO, near and far
As galaxies get redshifted into the ALMA bands, dimming due to distance is offset by the brighter part of the spectrum being redshifted in. Hence, galaxies remain at relatively similar brightness out to high distances. But first stars formed $z \sim 10 \ldots$ spectra differed.
Band 5 (163-211 GHz)

- Water! High resolution Herschel follow-up
- Redshifted CO and $z \sim 10$ C$^+$
‘Band 11’: Creation of the Metals

When chemistry got interesting (\(H_3^+, H_2D^+, H_2, HD\) notwithstanding)

ALMA should be able to monitor the creation of

- O ([O I], [O III], OH, \(H_2O\))
- C ([C I], [C II], CO, CH, CH\(^+\), \(^{13}\)C)
- N ([N II], NH, \(N_2H^+\))
Opening Up the Dark Side of Reionization

Overview of Cosmic Evolution

After R. Barkana
J1148+52: A Paradigm Distant Monster Galaxy

- An early ($z=6.42; 0.8\text{Gyr}$) massive and extended region of tremendous star formation observed by IRAM

- $\sim 1000 \text{M}_{\odot}/\text{yr}/\text{kpc}^2$
- Region ~ 750 pc radius
- Similar to Arp220 but 100 times larger

- Mass $\sim 2 \times 10^{10} \text{M}_{\odot}$

Walter et al 2009
J1148+5251: an EoR paradigm with ALMA

Wrong declination (though ideal for Green Bank)!

But…

High sensitivity
12hr 1s 0.2mJy

Wide bandwidth
3mm, 2 x 4 GHz IF

Default ‘continuum’ mode
Top: USB, 94.8 GHz

CO 6-5; HCN 8-7; HCO+ 8-7; H$_2$CO lines

Lower: LSB, 86.8 GHz

HNC 7-6; H$_2$CO lines; C18O 6-5

H$_2$O 658GHz maser?

Secure redshifts

Molecular astrophysics

ALMA could observe CO-luminous galaxies (e.g. M51) at z~6.
ALMA into the EoR

ALMA J1148 24 hours

- **Detect dust emission in 1sec (5σ) at 250 GHz**
- **Detect multiple lines, molecules per band => detailed astrochemistry**
- **Image dust and gas at sub-kpc resolution – gas dynamics! CO map at 0”15 resolution**

Spectral simulation of J1148+5251

- [C II]: 60sec (10σ) at 256 GHz
- [O I] 63 µm at 641 GHz
- [O I] 145 µm at 277 GHz
- [O III] 88 µm at 457 GHz
- [N II] 122 µm at 332 GHz
- [N II] 205 µm at 197 GHz
- HD 112 µm at 361 GHz
Bandwidth Compression

Nearly a whole band scan in one spectrum

Schilke et al. (2000)
J1148: A possible (not from Chajnantor!)
H$_2$ observation
An early (z=6.42; 0.8Gyr) massive and extended region of tremendous star formation

~1000 M$_{\text{sun}}$/yr/kpc2
Region ~750 pc radius
Similar to Arp220 but 100 times larger

Mass ~2 \times 10^{10} M_{\text{sun}}
ALMA 1 hr, 5σ, 300 km/s
Single to score of clouds of $10^8 M_{\text{sun}}$

After Appleton et al 2009
What is ALMA?

- Up to 64 12m antennas
- Plus the Compact Array of 4 x 12m and 12 x 7m antennas from Japan
- Baselines from 15m to 18km
- 5000m elevation site in Atacama desert
- Receivers: low-noise, wide-band (8GHz), dual-polarisation, SSB
- Digital correlator, >=8192 spectral channels, 4 Stokes
- Sensitive, precision imaging between 30 and 950 GHz
 - 350 GHz continuum sensitivity: about 1.4mJy in one second
 - Angular resolution will reach ~40 mas at 100 GHz (5mas at 900GHz)
 - 7 Receiver bands: 100, 140, 230, 345, 460, 650 & 900 GHz

- 10-100 times more sensitive and 10-100 times better angular resolution compared to current mm/submm telescopes
VLA Capability

• ALMA as a very sensitive node in a breakthrough array could enable:
 – Imaging of the Black Hole at the center of our Galaxy
 – Few 10 microarcsec resolution
 – Include with sensitive elements elsewhere:
 • GBT 3mm and below
 • LMT to 345 GHz
 • CARMA, SMA, JCMT, CSO

• Element of SA Array (~1 milliarcsec resolution)
 – ALMA Prototypes on high Argentine peaks (Brazil-Argentina proposal)
 • Several tens milliarcsec astrometry characterizes exosolar planets
 • Stellar photospheres resolved with beams much below 1 milliarcsec
 • Measure motions of galactic masers
 • High resolution observations of extragalactic megamasers (compare with VLBA project)
 – Resited SMA (Sairecabur?)
 – CCAT (short baseline)
Push to Early Science

- Interferometry at 2900m June 2009 and onwards
 - Move past accomplishments at the ATF
 - Production equipment, for the most part
 - Still one baseline
- Antennas exiting AIV phases moved to 5000m Aug/Sep 2009
- Interferometry at 5000m Nov/Dec 2009
 - Beginning of Commissioning and Science Verification
 - First use of LO, correlators, B8, B9 and eventually B10
- Call for Early Science Proposals Dec 2010
- Early Science Q4 FY2011
ALMA’s First Ten Years

• A feature of ALMA Operations is Development
• Possibilities:
 – Finishing unfinished frequency bands
 – Expand collecting area to recommended 64 x 12m telescopes
 – Expand resolution by adding VLB capability
 – Addition of new bands—more challenging, but a ‘Band 11’ seems unusually promising given the thrust of science, the excellence of the site and the promise of the first antennas
• Synergies with GBT
 – Together, they cover the whole sky
 – ALMA’s Field of View is limited—finding the interesting objects might best be done by arrays on large telescopes—GBT, LMT, CCAT
 – Two unbuilt ALMA bands overlap GBT coverage—prototyping e.g. 67-90GHz B2 ALMA receiver
ALMA is nearly here!

The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East cooperation with the Republic of Chile. ALMA is funded in Europe by the European Organization for Astronomical Research in the Southern Hemisphere (ESO), in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and in East Asia by the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Academia Sinica (AS) in Taiwan. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI) and on behalf of East Asia by the National Astronomical Observatory of Japan (NAOJ). The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.