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• Basic radio astronomy
• Antenna fundamentals
• Types of antennas
• Antenna performance parameters



General Antenna Types
Wavelength > 1 m (approx) Wire Antennas

Dipole

Yagi

Helix
or arrays of 

these
Wavelength < 1 m (approx) Reflector antennas

Wavelength = 1 m (approx) Hybrid antennas (wire reflectors 
or feeds)

Feed



Consider a simple radio telescope, two bent wires (dipole) attached 
to a meter, exposed to a point source a large distance away.
The meter responds to the presence of the source.
We define D(<,2,N) = meter deflection, where 2
and N are the sky coordinates of the point source, 
and < the frequency of observation.

For some orientation of source and dipole the
meter deflection will be maximum.  Define
Dmax(<,2,N) = D(<,2max,Nmax) and
D(<,2,N) =      P(<,2,N)    <    1.
Dmax(<,2,N)

P(<,2,N) is the
Beam Pattern

P(<,2,N) has a ‘zeroth’ moment: SA= mm P(<,2,N) d S where
all sky

SA is the Beam solid angle.  Then define D=4B/ SA is the
Directivity or Gain of the antenna. Generally, maximizing D is 
good, and to accomplish it we fashion cunningly shaped pieces of
metal around the basic antenna.



100-meter
Green Bank
Telescope

GBT
Dedicated in 2000



BASIC ANTENNA FORMULAS

Effective collecting 
area A(<,2,N) m2

On-axis response A0 = 0A
0 = aperture efficiency

Normalized pattern
(primary beam)
P(<,2,N) = A(<,2,N)/A0 

Beam solid angle  SA= mm P(<,2,N) d S
all sky

A0 SA = 82   Also Main lobe solid angle SM= mm P(<,2,N) dS
and  Full Half Power Beamwidth ‘FWHP’
0B = SM/ SA <1 the Beam Efficiency



Reciprocity the power pattern of a transmitting antenna is identical to 
that of a receiving antenna.  Suppose there are two identical antennas.
In the transmitting antenna A we generate a current flow IA we will 
measure a current flow IB at antenna B and vice versa.

Now consider the antenna as an electrical system, equivalent to a 
source of fluctuating voltage V characterized by <V2> the mean 
square voltage, and some characteristic resistance. 

RA <V2> 
Nyquist showed that a resistance RA at a temperature
TA will produce a constant noise power per unit 
frequency interval.  Therefore we define the fluctuating 
voltage in the antenna as arising from some characteristic 
temperature of its characteristic resistance:
<V2> = 4k TA )< RA 
The power emitted into some frequency interval is 
Pem=  k TA )< 
For a receiving antenna we connect a receiver (RLOAD) 
and draw power PLOAD= <V2> RA/(RA + RLOAD)2

RA <V2>

RLOAD



The maximum power drawn is obtained by matching the receiver to the
Antenna, which requires setting RA = RLOAD and we find that
Pabs = PLOAD(max) = <V2> RA /(2 RA

2 ).
Now, from reciprocity, identify the <V2> arising in the receiving antenna 
with the <V2> in the transmitting antenna and by Nyquist’s law
Pabs = k TA )< .

We have identified the power stimulated in the antenna by the presence 
of a source with that obtained by heating the characteristic antenna 
resistance to some temperature TA .  This is the Antenna Temperature.

In reality, TA refers to anything in the beam—source, sky, birds, etc.  The 
noise power associated with TA is combined with that from the receiver 
and what we actually measure is
TSYS = TLOAD + TA , or System Temperature .  In many cases, TA is 
small compared to the other terms.  Note that by cooling the receiver, we 
can make the load temperature, and the system temperature, smaller.



Radiometer Equation
Now <V2>  is the mean sum of potentials arising from collisions  
among the thermally agitated electrons in the system.  The number 
of collisions nc will be proportional to the system temperature.  To 
measure nc we count collisions for a time.  For a total of N counts, 
then the uncertainty in nc will be:
)nc =  _1___
nc            BVN
While the collisions are nearly instantaneous, the detector has a 
finite bandwidth )< and its response to an individual collision has 
a time constant, 1/ )<.  Therefore in an integration of J seconds, 
one obtains N= )< J independent counts.
)nc  % _ 1___   )Tsys = K Tsys

nc            BV)<J  or                 BV)<J the Radiometer Equation

Where K, near unity, depends on the receiver and the mode of 
observation.



Radiation, Intensity, Flux Density

Consider radiation incident upon the antenna, as represented by the 
specific intensity I<(2,N).  Then the power passing through an area 
dA, directed into solid angle d S is:

dPincident= I<(2,N)cos 2 dA d S d<

And the total power incident upon the antenna is then:
<+)<

Pincident= m< d< m4Bd S mantdA cos 2 I<(2,N)

Where the source may be extended and its intensities may be added 
linearly.  For )< small, I< is constant, and if we point the telescope at 
the source, cos 2 =1 so that
Pincident= )< m4B A I<(2,N) d S where A is the physical telescope area.
Ae(2,N)= AeP(2,N) and Ae is the effective area of the telescope.
0A = Ae/A is the aperture efficiency of the telescope.  Also,
S<= mm d S I<(2,N) is the flux density of the source.



Of course, Pincident and Pabsorbed are usually not equal.  Often, a receiver 
is sensitive to only one polarization of the incoming energy and
Pabsorbed = 0.5 )< Ae S< and so using the relation 82 = Ae SA (cf. Kraus’
Radio Astronomy Chapter 6, esp 6-2 & 6-7). Then
D= 4B Ae/ 82

TA = 82 /2k SA mm4B d S P(2,N) I<(2,N) a good statement of our 
measurement.
Now, for a blackbody,
I<=2h<3/c2 (eh</kT

B-1)-1 and for h<nkTB then I<. 2kTB / 82

Or  J(TB) / 82 I< /2k   the Radiation Temperature
Or, since h<nkTB generally holds for centimeter frequencies,
TB / 82 I< /2k   the Brightness Temperature
Beware that at millimeter wavelengths this is not true and
TB =h</k (eh</kT

B-1)-1 

Now we have TA =1/SA mm4B d S P(2,N) TB(2,N).  For a source smaller 
that the beam, we have
TA = SS /SM TB where SS /SM is called the dilution factor.For a larger 
source, TA = SM / SA TB = 0B TB; 0B is called the Beam efficiency.



Equation of Transfer
dI< = j< ds - k< I< ds where j< and k< are volume emission and absorption 
coefficients, which depend upon physical conditions along the line of 
sight, ds.  Then
dI< / ds = j< - k< I< and defining optical depth J =k< ds
dI< /d J = j< /k< - I< which we can integrate from J1 to  J2

J2

I< (J2)=I< (J1)e –(J2 - J1) + mJ1 dJ< (j< /k< )e –(J
2

- J
<

)

Define J1 = 0, J(TB) =82 I< /2k , and J(TS) =82 /2k (j< /k< ) where

TS is the Source Radiation Temperature.  Then
J2

TB (J2)= TB(0)e –J2 + m0 TS(J)e –(J
2

- J
<

) dJ
j< /k< is the Source Function and may be uniform along the path—that is,
TS(J)=constant.  If so, then
TB (J2)= TB(0) e –J2 + TS (1-e –J2 )
For J2o1 then TB (J2). TS (optically thick)
And J2n 1 then TB (J2). TB(0) + TS J2 (optically thin)



Single Antenna

R.D. Ekers



Single Antenna
+ 

Focal Plane Receivers

R.D. Ekers



Single Antenna Made of Many Panels



Antenna of Panels

R.D. Ekers



( ( ΣΣ Vi )Vi )22

Free space

Guided

Antenna of 
Antennas 

R.D. Ekers



((ΣΣ Vi )Vi )22

Dish of Dishes 

Guided

Free space

R.D. Ekers



((ΣΣ Vi )Vi )22Phased array Guided

Delay

Array of Dishes 
Free space

R.D. Ekers



((ΣΣ Vi )Vi )22Phased array Guided

Delay

Array of Dishes 
Free space

R.D. Ekers

∆Θ = λ/D

D



Beam Forming
Array

 ∆t

θ

I1
R.D. Ekers

((ΣΣVi)Vi)2 2 ((ΣΣVi)Vi)22

I2



Imaging
Array θ

I(θ)
R.D. Ekers

Correlator



The Very Large Array - VLA
Dedicated in 1980



ALMA at Chajnantor

ESO



Radio Astronomy Examples

Jupiter – a disk about 1 arcminute (1’) in diameter, most of its radiation 
is re-emitted solar radiation, with some derived from gravitational 
contraction; the temperature of its disk is about TB ~200 K is the . TB /
Brightness Temperature.  For a perfect telescope with a beam with size 
1’ or less the antenna temperature will approximate this—recall that for 
a source smaller that the beam, we have
TA = SS /SM TB where SS /SM is called the dilution factor.For a larger 
source, TA = SM / SA TB = 0B TB; 0B is called the Beam efficiency.
Take, typically, 0B=60%.  Now recall that for a blackbody,
I<=2h<3/c2 (eh</kT

B-1)-1 and for h<nkTB then I<. 2kTB / 82

So S<= mm d S I<(2,N) is the flux density of the source.
S<. 2kTB d S / 82 .  So we know how bright Jupiter is, how long does it 
take to detect it with various telescopes at various wavelengths?  We 
need to know the sensitivity, System Temperature and the sensitivity 
of our system from the Radiometer Equation  )Tsys = K Tsys

BV)<J



Then at 8=1cm, for Jupiter,
S<. 2kTB d S / 82 =2(1.38x10-23)(200) (8.46x10-08)/(.01)2

S<. 4.67 x 10-26 Wm-2 Hz-1 sr-1 = 467 Jansky (Jy).  At 8=3mm, 
S<. 5189 Jy and at 8=0.3mm S<. 518900 Jy.  Note that as long as the 
source fills the beam, TB remains constant, while S< increases with 
decreasing wavelength, as it follows the long-wavelength tail of the 
Planck blackbody function.
Beware that at millimeter wavelengths h<nkTB this is not true and
TB =h</k (eh</kT

B-1)-1 so this approximation fails into the submillimeter!
Now let’s assume Tsys = Trx = 50K, resonable at 1cm, ignoring the 
atmosphere.  Let’s integrate for 1 second, and for a bandwidth what is 
reasonable???  Say 50 MHz to be conservative, though )</<=30% for a 
state-of-the-art high frequency receiver.  Then for K=2 (position 
switching) we have )Tsys = 0.014 K—a signal-to-noise ratio of 8600 in 
one second!
Wow!  Jupiter is bright!  Can we see Jupiter around another star???



Once we dreamed… now 
we can detect them!

Radial velocity surveys are
sensitive to ~Jupiter/Saturn
mass planets.



S<. 2kTB d S / 82 where d S is the solid angle, and Jupiter filled the 
beam. Jupiter’s radius is 70,000,000 m.  In the previous slide we saw 
that Epsilon Eridani had a Jovian sized planet at a distance of 3.3AU 
from its solar-type stellar host, so its brightness temperature is probably 
similar.  Epsilon Eridani lies at 3.2 pc = 1017 m, so approximately
SEpEri = B (7x107 m/ 1017 m)2 SJupiter = 10-7 Jy even at 3mm!  Even at
0.3mm, this planet only provides a few microJy.  Or, in terms of 
brightness temperature, TA = 0B TB .SEpEri / SM TB . 10-18 TB! Clearly 
we win by making the beam as small as possible but even for ALMA this 
would take many many weeks!

Epsilon Eridani a nearby 
star with planets AND a 
dusty debris disk…



But wait a minute…what about the dust disk in the last slide????

The problem is the beam-filling factor—for an extended disk
(and a 100 AU solar system at that distance is about 30”), even for 
very low masses, current instruments can detect about a lunar mass 
of extended cold dust (say 50K), but with resolution of only 8” in the 
submillimeter region, or ~1” in the millimeter.

Extended sources are easier—protoplanets or dust disks best
Cooler objects easier than hot objects, to some limits
Resolution is the key—confusion (the dust disk as ~1mJy of flux, 

hence 1000 times the signal!) 
From the emissivity of the dust, we can measure the mass of dust 

directly.



ALMA & debris disks/planets:ε Eridani JCMT Present mm-wave cameras 
provide only a few pixels, 
ALMA imaging will rival HST.

x10

ALMA Simulation



Debris Disks

• These provide a challenge to ALMA imaging 
because:
– They are faint about nearby stars – 1mJy is about half a 

lunar mass at 12 pc
– They are extended about nearby stars—several fields of 

view at 12 pc for instance
– They emit most strongly in the submillimeter, where 

imaging is the greatest challenge.
• But they can provide best evidence for planetary



Optical Infrared

Alves et al. 2001

Stars are born in COLD, DARK clouds…

Using trace molecules, mm-wave 
astronomy can probe these regions directly.

B68



Cloud collapse Rotating disk

infall

outflow

Planet formation Mature solar system

x1000  
in scale

Adapted from McCaughrean

How are single stars created?

Scenario largely from indirect tracers.



The need for angular resolution: I

5 Astronomical Units (AU = Earth-Sun Distance)



The need for angular resolution: II

How large are these disks in Orion?



The need for angular resolution: II (cont’d)

About 2x Sun-Pluto, or 1-2’’ on the sky.



Millimeter-wave arrays: Current technology

SUBARU imaging @ λ = 1 mm              D > 1 km!

Plateau de Bure

CARMA = OVRO + BIMA

Current arrays 
are small and  
situated at 
relatively low 
elevations.



Protoplanet
Formation

• Disks are observed about young stars, 
but with poor resolution

• ALMA will provide the resolution and 
the sensitivity to detect condensations, 
the cores of future giant planets

• As the planets grow, they clear gaps 
and inner holes in the disks

• On the right are models of this 
process, and on the left simulations of 
ALMA’s view showing that 
condensations, gaps and holes are 
readily distinguished

Simulation and Model courtesy Lee Mundy, U. Md.


