
 1

12 Computing

Revision History:
2000-09-29: Complete rewrite.
2000-10-06: Correct some typos and phrasing.
2000-11-22: Update data rate requirements, ZASI description.
2001-01-22: Reflect new AMBSI names, replace ATM with Gb Ethernet.

12.1 Introduction
B. Glendenning (NRAO)
Last Revised: 2000-11-22
This chapter describes the operational software required for ALMA. This includes real-time and
near-real-time software to monitor and control hardware devices, software to schedule the array,
software to format the data suitably for post-processing, software to archive and restore the data,
software to perform fundamental calibrations (e.g., pointing) required to operate the array,
commissioning software (e.g., holography), and software to implement a near-real-time imagine
pipeline. It does not generally include post-processing software, firmware that is "inside" the
device (excepting the correlator), or engineering test software that is not needed during
operations.

ALMA Computing, principal requirements

Sustained data rate, science data 6 MB/s (Average)
60 MB/s (Peak sustained)

Image pipeline First-look images produced automatically for
standard observing.

Dynamic scheduling

Nearly automatic scheduling of the array,
accounting for current weather and other
conditions, to optimize the scientific
throughput of the array.

Archiving
Networked archive of all ALMA raw science
data and associated calibration data and derived
data products.

12.2 Science Software Requirements
R. Lucas (IRAM)
Last Revised: 2000-11-22

The scientific requirements for ALMA software have been described in ALMA memo 293 rev.1),
from which we reproduce here the introductory remarks. The reader is encouraged to read this
report for details. A new version of this report is being prepared, which will include more formal
requirements and execution scenarios (Use Cases).

 2

The operation of ALMA will have to deal with a larger variety of projects than previous
instruments: on one hand at long wavelengths (1-3 mm) due to the high sensitivity and quality of
the site, and a long experience with millimeter-wave interferometry, we can predict with
reasonable certainty the observing modes that will be used, the relevant observing strategies to
schedule the instrument, and the data reduction techniques. On the other hand at the highest
frequencies (~300µm) no array has been operational yet; we plan to rely on techniques such as
radiometric phase correction, fast phase switching and phase transfer between frequency bands,
that have been demonstrated, but not applied with the operational scale that we foresee for
ALMA. We thus will have to combine in the software a high level of automation, needed to deal
with the large information rate that will be available, with a high level of flexibility at all levels to
be able to develop and implement new observing methods and reduction procedures. For simple
projects, the astronomer with little or no experience of radio techniques should be able to use the
instrument and obtain good quality results; however, experts should easily be able to perform
experiments we do not even foresee today.

The expert user/developer will need to be able to send direct commands to the instrument through
a simple, easily editable command language. Atomic commands in a script language will directly
send orders to the basic software elements controlling the hardware: antenna motion, instrument
setup, or transmitting parameters to the data processing (pipeline). The script language will
support loops, structured conditional tests, parameterized procedures, global variables and arrays
... These scripts, once fully developed and tested, will evolve into the basic observing procedures
of the instrument.

The general user will need more user-friendly graphic interfaces to many components of the
system. They will propose several templates, corresponding to the available observing modes,
and provide a simple way to pass astronomy parameters to the basic observing process and to the
corresponding data reduction procedures of the pipeline. Input parameters will preferably be
expressed in terms of astronomical quantities, which will be translated into technical parameters
by sophisticated configuration tools.

Proposal submission will be in two phases, the first before proposal evaluation, the second to
provide information needed for the actual scheduling and observation.

We believe that dynamic scheduling is an essential feature of the instrument and should be
installed from the very beginning of its operational life. Though the site is undoubtedly one of
the best for submillimeter observations, it will only be usable at the highest frequencies for a
fraction of the time; to improve the total efficiency we must be able to make the best use of all
weather conditions, by selecting in quasi-real time the project most suited to the current weather
and to the state of the array. This means we should always be able to observe a given project in
appropriate weather conditions. This philosophy can be extended to the point where a given
project can change its own observing parameters according to variations in observing conditions
(such as atmospheric phase rms).

The whole real-time system will be under control of a telescope operator, through a specially
designed interface. This must provide an overview of what observation is occurring, the state of
the instrument, and observing conditions on the site, and should enable the operator to react to
any unexpected event. A general monitoring interface must be also accessible through the
network.

The instrument should produce images, aiming to be final for most projects, even when projects
are spread over several sessions and configurations, and/or include short/zero spacings. For this
purpose an on-line pipeline is required. It will include calibration of the array itself, to reduce
measurements of baseline, delay offsets, and determine pointing models during specific sessions.
During standard observing sessions reference pointing and focusing measurements will have to be

 3

reduced, with fast loopback of results to the observing process; the phase fluctuations on the
phase calibrators must be evaluated, with a feedback to both the real time process and the
scheduler. Calibration will be applied on-line and maps/datacubes will be produced according to
data processing parameters input by the observer. Single-dish observing sessions will also be
reduced on-line. The pipeline must be able to reduce on line the quasi totality of the data, which is
expected to be produced at an average rate of 6MB/s, with a peak rate of 60MB/s for some
observing sessions.

For most projects the data pipeline will produce results in a form suitable for quality evaluation,
and astronomical processing, hopefully leading to fast publication. Uncalibrated UV data will be
archived together with the calibrations curves and the resulting images. The archive should enable
fast access to the observing parameters and full reprocessing of the data set with improved
processing algorithms.

A general requirement is that the various parts of the system should be developed in a highly
consistent way, from the very beginning of design; they may however be installed progressively,
provided the critical elements are implemented first.

12.3 Architectural Overview

12.3.1 Physical
B.E. Glendenning (NRAO), G. Raffi (ESO)
Last Changed: 2001-01-22
As shown in Fig.1, the ALMA computers and networks are organized around a few geographical
areas:

- Antenna computers, which are repeated and essentially the same at the 64 antennas

- Central computers at the ALMA site, with central control and coordination functions linked
to the whole array.

- Operation Support Facility (OSF) computers to offer user and maintenance interfaces to the
whole array from San Pedro.

- Data centers in Europe and USA with archiving and remote access functions

- Other computers accessing ALMA via Internet. Although these should be seen as external to
the ALMA project, their presence and functions might have to be supported via certain
categories of software and so they have to be considered.

It is important to note that operation at OSF is considered as local operation, i.e. all normal and
maintenance operations are available at the OSF with full functionality and performance. The
only reason to perform maintenance at the ALMA site has then to be the need for physical access,
replacement or movement of parts, but not any limitation in the capabilities offered at the OSF.
These should include video and audio links to the central computers at the ALMA sites and
possibly to the antennas.

 4

Fiber

General Support Network

Operations Support Facility (San Pedro)

Data Center

USA

Data Center

Europe

Central Site Electronics and Services

Switch

Antenna

Antenna

Antenna

Antenna

...

ALMA Site

Fiber

Data Center

General
Internet

Data Center

Figure 1 - Overview of ALMA Computer Systems and Networks

 5

C
A

N

High-Speed Switched Network

C
A

N

Et
he

rn
et

Array Real-Time Machine
(ARTM)

OperatorsAnalysis
Engineering station

Short-Term Data Archive

Switch

Antenna Bus Master

ACU

Correlator Control Computer
(CCC)

Receivers

Data
Receivers

LO System

IF System

Optical
Telescope Cryogenics

Fiber

etc.

Correlator

Array Control Computer
(ACC)

Calibration Pipeline

CRG

etc

GPS

TP Detectors

Holography

Figure 2 - Layout of computers at the site

 At each antenna there is an Antenna Bus Master (ABM) – a VME Power PC based VxWorks
computer. Its principle role is to provide real-time control of the devices at the antenna based
upon infrequent time-tagged commands from the center. It serves also as a router for the antenna
Ethernet segment.

All devices with computer interfaces are attached to a Controller Area Network (CAN) bus,
through which they are controlled and monitored. More details about the properties of these
interfaces are described under Monitoring and Control. A particularly important device is the

 6

Antenna Control Unit (ACU) that is provided by the antenna vendor. It is implemented as a
VME/PPC/VxWorks computer. While like any other device it is controlled over the CAN, it also
has an Ethernet interface for software maintenance and the setting of static parameters that do not
need to be changed in normal operations.

It is assumed that data transmission from the total power detectors and holography backend is
done over Ethernet.

The optical telescope (for the antennas where this will be mounted) is also commanded via the
CAN bus. Its video output will be digitized and transmitted over Ethernet and via the ABM to the
central computers.

Each ABM is connected to the central systems via a point-to-point Gigabit Ethernet network that
terminates at a switch. The switch is in turn connected to a high-speed switched network on
which all central ALMA computer systems required to operate the array are attached.

At the center there are two real-time computers. The Array Real-Time Machine (ARTM) plays
the role of the ABM, providing local real-time control of its attached CAN devices. The
Correlator Control Computer (CCC) is the other central real-time computer. It provides the
interface for the correlator, and provides detailed control of the correlator hardware. Both the
ARTM and CCC are VME/PPC/VxWorks based systems.

The coordination function is implemented via the Array Control Computer (ACC), which is a
high-end workstation running the Linux operating system. It is responsible for controlling all
hardware in the array (indirectly through the ABM, ARTM, and CCC computers) under the
command of a high-level observing script. It also runs various ancillary software such as model
(e.g., delay) servers, data formatting, etc. If necessary for performance reasons the ACC functions
could readily be split into multiple computers.

There will be a few general purpose Linux systems on the switched network for operator access,
astronomical data analysis, software development, and the like. Computers with Labview will be
used for engineering and maintenance purposes.

Data from a meteorological data station will also be available at the OSF.

12.3.2 Logical
G. Harris (NRAO)
Last Changed: 2000-09-28

The ALMA Control Software System has a number of concepts, among them are session,
sequence and data products. The Conceptual Diagram portrays some of these important notions.

 7

Correlator
Controls

Sub
Array

Control

Antenna

Rcvr
Group

Rcvr

Cryo ACU
. . .

1 ... 64

Composite Device Nodes:

Leaf Nodes:

EQUIPMENT MONITOR STREAM

SESSION LOG

SYSTEM/OPERATOR
LOG

SCIENTIFIC DATA =
RAW UV

MONITOR DATA

OUTPUTS:

more
sessions,

etc ...

LO IF

SCIENTIFIC DATA =
IMAGES

ALMA Control Software System - Conceptual Diagram

Session Manager
- Resource Manager -

C
O

M
M

A
N

D
 &

 C
O

N
TR

O
L

SESSION
Object Command

Sequencer

GUI o
r C

omman
ds

Script

SCIENTIFIC DATA =
CALIBRATION DATA

Logs:

Products:

Raw Data:

SCIENCE DATA STREAM

LOG STREAM

Post
Processing

Calibration
&

Adjustment

Data Collection & Recording

Observation

Figure 3 - ALMA Control Software System - Conceptual Diagram

First of all, there is a session manager or executive, described below, which creates observer work
sessions and allocates resources such as antennas, correlators and post processors to them.

 8

This observer session will perform observations and perform other processing. It is directed by a
programmatic script created in advance by the observer, or entered directly in interactive mode
through a GUI or commands. These commands will expand through the action of the software
system into a sequence of device commands.

While operating an observation, for example, control commands will be issued to a software
structure as shown in the shaded box labeled Observation. This structure operates the sub-array of
antennas and correlator as a unit, issuing device operations in a timed sequence. Then later, the
same session might drive a Post Processing operation to process the raw data placed in the
archive by the Observation activity and make it into finished images.

The Observation box shows some of its major activities by component. First, the commands flow
down the structure of sub-array and antennas in a hierarchical manner. The further hierarchical
structure of device groups and devices, shown in the composite and leaf device nodes, leads us to
name this structure a control tree, as shown in later drawings. Each tree has groups of devices,
such the receiver group with receivers, filters, LOs and IFs. Ultimately, the software tree reaches
down to leaf nodes connecting to hardware.

As the observer operates the instrument, the observer's session will create Outputs as shown in
the diagram. There will be logs, both of individual sessions, and of the system as a whole. There
will be raw output from an observation plus processed images and calibrations. Some of these
activities may be in parallel, allowing feedback into observation parameters.

The system also needs to operate independently as observer sessions come and go, keeping logs
and equipment status, performing maintenance and calibration and other activities. Supporting
this is Data Collection and Recording, which operates at the system level. This is shown by
another shaded box in the diagram. Data collection from the equipment is not dependent on a
control session, nor vice versa.

The collection process streams information from the antennas to central storage and makes it
available for the system as well as the observer sessions when they are operating. There is
equipment information: temperatures, frequencies, etc.. There is science data processed by the
correlator. There is also log information, constantly from the system and operator, and
periodically from observer work sessions. There is a method, described below, to subscribe to the
information published by the data collection process.

Now moving from the general concepts of session, sequence and data products, look at the details
of session operation as shown in the figure for Logical Architecture.

 9

LOCAL STORAGE

Initializer,
Session Manager

Resource Manager

Session Control

Configuration Control

CONSOLE

SYSTEM
EXECUTIVE OBSERVING SESSION

Equipment Data

Stored Procedures

MONITOR DATA

SubArrayControl

SCIENCE DATA Science Data

Correlator

CONSOLE

Array
Configuration

Commands

Processed
Data Output

Data Collector Channels

ARTM

Direct Input
from Receivers

External
Real-Time
Computers

Antenna Bus Master

CONTROL
TREE

Antenna:

D

D DD

M
&
C

M
&
C

D
C

Data Collector
Concentrator

Publish
Subscribe

Concentrator

Post
Processing &

Archive

ALMA Control Software System Logical Architecture

Antenna Bus Master

CONTROL
TREE

Antenna:

D

D DD

M
&
C

M
&
C

D
C

Data Collector
Concentrator

1 ... 64

Figure 4 - ALMA Control Software System Logical Architecture

First of all, ALMA has a supervisory program called the system executive. The executive
initializes the instrument, creates processes for observers called work or observing sessions,
allocates resources, and launches services which collect and process data. It also supports
operator activities.

 10

The action is similar to initializing an operating system:

• During startup, a resource manager locates and initializes the devices, sometimes using
information from a configuration control database.

• The system processes are started and necessary communications connections established,
making devices available to processes in the system. This is especially important for services
such as object component naming, which supports various parts communicating with each
other.

• The initial allocation of these resources is performed, to a resource pool or to an observer.
• Then observer processes are started to use the resources and perform work. These are

typically called sessions.
There may be many observer sessions, operating simultaneously. There may also be additional
operator work sessions, as the executive will also provide for some maintenance and
configuration activity.

Using the logical architecture diagram, we can see how this will operate. The operator will start
the executive after operating system startup.

The executive will first start the resource manager. The resource manager will be responsible for
using the configuration database to initialize the antennas. Each antenna will be completely
initialized, including the control tree and Antenna Bus Master [ABM], and allocated as a unit to a
work session. This process will also register all the objects [devices] in the antenna in the object
naming system.

Once these devices can be identified, the executive can also start the data collection process in
each antenna's ABM computer. The ABM collector concentrates the equipment information from
about a thousand points per antenna. There is also a central collector, which gathers the data from
each antenna. [There will be 64 antennas.] This is called a publish/subscribe mechanism. Once
the data is collected into the central Array Control Computer [ACC], other processes may
subscribe from this central publisher.

With all antennas initialized and the data collector operating, the executive can start work
sessions for the observers and give them appropriate resources depending on the desired
observing mode. When a work session terminates, the executive will clean up the resources and
possibly re-initialize them or place them in a known state for another session. Operator sessions
or direct executive commands may be used for various standard activities, parking or stowing,
shutdown, special calibrations etc.

[Now look in the drawing at the section labeled SESSION.]

Using the work or observing session, the observer enters commands or retrieves stored commands
on the system if in interactive mode. If in automatic mode, prepared observing scripts are
executed in the order presented by the system scheduler. The observing commands are
propagated into the SubArrayControl and then to each antenna through a control tree, a software
construct representing the devices on the antenna.

The method by which this is done is called CORBA [Common Object Request Broker
Architecture], an industry standard. Use of distributed object oriented technology is quite
extensive in this instrument. Every possible piece of the software is object based, from the
configuration data, to the scripts and their functions, to the devices in the control tree and even to
the hardware device control points on the antennas. This facilitates the creation, management and
execution of the control software.

Some devices are simple and others are treated as a group. The letter D inside the control tree
triangle represents a Device, perhaps a composite hierarchy of receiver parts such as LO, filters,

 11

etc. The hierarchy of devices, represented by the triangle, expands commands as they propagate
through the control tree. Sometimes a simple command by the observer results in many
commands to the bottom level devices.

Some software devices are in the central computers, in what may be called the logical time part of
the system. Other devices are in external computers such as the correlator, the Array Real Time
Machine [ARTM - the time server] or even out on the antennas, next to their associated physical
devices in what we call the ABM [Antenna Bus Master]. These external computers are
represented by dotted lines and operate in real time. The dotted line between the control tree
of an antenna and its ABM out on the antenna represents the transition from logical time to real
time.

Once commands reach the ABM, they go to appropriate Monitor and Control points [M&C].
Monitor points read the value of a single hardware access point and Control points can set the
value of a single hardware access point.

Sometimes a behavior is needed in real time which physical devices do not have. Rather than
trying to perform this more complex behavior remotely from the control tree, a software construct
called a device controller [DC] is used. For example, a nutator sequence may be given as a single
command from the command tree resulting in many actions by a device controller in the ABM,
all synchronized in time.

Another feature of this architecture is the decoupling of the control system from the data
recording. The control system is not dependent on the data monitoring and recording system. Or
vice versa. Equipment may be monitored even when not being used for observations. Just as the
antennas are configured and initialized before giving them to a work session, so also is the data
collecting system turned on and initialized by the system executive.

The correlator is accessed on two levels. First it is configured on an array basis and commanded
as shown in the drawing by the SubArrayControl at the subarray level As data coming from the
receivers is sent to the correlator, it is processed and the correlator output goes into the science
data.

Another independent computer with support electronics is the Array Real Time Machine
[ARTM]. It coordinates with external clock sources, internal frequency generators and other
equipment to provide a timing standard to the array.

When operating in interferometric mode, a single session drives many antennas constituting a
sub-array. The SubArrayControl distributes the current command from session control to the
antennas, correlator, etc.. Generally all antennas receive the same command, but each can also be
individually addressed. Any per antenna differences in processing a command are handled by
each antenna's control tree and ABM.

Other activities not shown in this diagram for simplicity are:

• Display sessions using the information from the central data publisher,
• Observing proposal preparation,
• Observation Scheduling and Dispatch,
• Image Processing Pipeline, and the
• Feedback from monitor data, and Image Processing to observations
• Archiving and distribution of data.

 12

12.4 Data Flow Software
J. Schwarz (ESO)
Last Changed: 2000-11-22

The Data Flow Software will encompass the end-to-end processing of an ALMA Observation,
from the preparation of a proposal by a prospective observer, through to production and archiving
of cleaned images/data cubes from the array. Support will thus be provided to:

• The proposer/observer;
• The proposal reviewers and those responsible for granting ALMA observing time;
• The array operations staff;
• The archival researcher.

The Data Flow Software will provide:

• Tools for the preparation of observing proposals; these tools will allow the proposer to
specify his/her scientific requirements insofar as possible. The tools themselves will then be
responsible for translating these requirements into array-level configurations and observing
scripts.

• A dynamic scheduler to maximize the observing efficiency of ALMA in service mode.
Observations will be scheduled based on assigned scientific priority, as well as appropriate
match to the existing observing conditions. Some (user-specified) observing parameters may
be adjusted to take account of changes in these conditions.

• A near-real-time pipeline, capable of feeding back results to the observing process, and of
producing images that should be of final quality in the majority of cases.

• An archive to store uv-data, images/data cubes, calibration data, observing programs
(including proposals, scripts, and observation parameters).

12.4.1 Observing Proposal & Programme Preparation

In order to ensure that ALMA is accessible to the largest possible segment of the astronomical
research community, the SSR has decided that prospective observers should be able to input their
scientific desiderata (e.g., angular resolution, spectral resolution, field of view, and signal to noise
ratio) and that the software tools provided by the Observatory should evaluate these for
consistency and feasibility, and derive the necessary Array parameters--from configuration
through correlator setup and selection of calibration sources to total observing time.

At the same time, there will be a mode that allows experts to bypass this feature of the tool
entirely, specifying in detail the low-level observational parameters to be used. The SSR
envisages that a scripting language will enable direct control of the Array. Moreover,
modification of accepted programmes is to be allowed up to the time that a Schedule Block
begins execution.

How Observatory Operations will coordinate these two types of programmes is TBD; in the case
of VLT Service Observing, only a limited set of templates are available to the Observer, and low-
level control of the telescope by, for instance, a user’s ad hoc script, is not allowed. Observation
Blocks, the basic units of VLT observing programmes, are vetted individually by the operations
staff. Modification of accepted Phase II Programmes by the observer is only allowed under
special circumstances.

12.4.2 Observation Scheduling
Although interactive observing will be supported by ALMA, it is expected that the Array will
usually be operated in Service Mode. As in the case of the VLT, the argument here is that ALMA

 13

is so expensive an instrument that every effort should be made to maximize its observing
efficiency.

In spite of the existence in the observing community of sophisticated software scheduling tools,
scheduling remains as much an art as a science. At the VLT, where the Spike inference engine
developed for the Hubble Space Telescope was adopted for long- and medium-term scheduling,
the final decision about which Observation Block is next to be executed is determined manually
by the Operations Staff. Spike is used primarily as a visualization tool at the VLT. It is quite
complex, and as it is written in Lisp, requires that comparative rarity, a Lisp programmer, to
maintain it. A commercial version, written in C/C++, is also available, and its purchase might
alleviate the maintenance problem. Until this is done at the VLT, automatic scheduling is likely to
remain a low priority. The VLT Operations Team has not found the manual scheduling procedure
to be an excessive load on their manpower resources so far.

On the other hand, the radio astronomy environment may be more hospitable to dynamic
scheduling. Wright (1999) described his dynamic scheduler for BIMA, which selected
observations on the basis of weather conditions, as a technical success. The algorithm for ALMA,
which will include the possibility of modifying some observational parameters (e.g., dwell time
on phase calibrators) in response to changes in atmospheric conditions, will be more
sophisticated, however. Such decisions will depend upon near-real-time feedback from one of the
data reduction pipelines (see below).

Although scheduling “what comes next” may be relatively simple, VLT experience demonstrates
that what seems like tonight’s optimal solution may cause problems (e.g., a schedule “hole”)
weeks or months later. A scheduling tool capable of generating possible timelines over longer
periods than just one night is likely to be needed. Moreover, no schedule can be optimized over a
several-month period unless the awarding of telescope time takes into account the distribution of
hour angle ranges and observing conditions that will be available.

12.4.3 Observation Execution & Interface to the Array Control Software
The interface to the Array Control Software is not yet defined and will be discussed in a future
revision of this document.

12.4.4 Near-real-time Pipeline Processing and Feedback to Operations
There is a requirement to feed back the results of e.g., pointing and phase calibrations to
Observatory Operations in near real-time. Some form of quick-look imaging will also be needed,
though definitive image production will probably need to wait for the results of calibrations that
may not be available simultaneously with the science data.

Design and performance of the pipeline will be discussed in a future revision of this document.

12.4.5 Archiving and Final Data Reduction
The ALMA Archive must serve two purposes:

1. To support observatory operations and to provide the observer with the data he/she wants and
needs in a timely fashion.

2. To support archival research by users other than the original observer.

Whether this will require two archives, a “short-term” and a “long-term” one remains to be seen.
The SSR has proposed allowing each observer to decide which data he/she wants archived,
subject to a limit determined by the correlator data rate (over the long term this is estimated to be
6 Mbytes/sec). If both corrected and uncorrected uv-data are to be retained, the effective rate goes

 14

to 6 Mbytes/sec, implying that of order 180 Terabytes must be archived each year. In any case, an
archive based on individual observers’ decisions is likely to be very inhomogeneous, and thus
may not be suitable as the official ALMA long-term archive.

In addition to uv-data, the archive will include images produced by the automatic pipeline
reduction system, as well as complete information concerning the conditions under which the
observations were performed and the data reduced. On the assumption that ALMA will have
adequate computing resources for the task, it will be possible for the archive researcher to request
reprocessing of the archived uv-data with improved calibration data and tailored algorithms.

12.4.6 Acknowledgments
Dave Silva, Bruno Leibundgut, Michele Peron and Peter Quinn of ESO’s Data Management and
Operations Division have been generous of their time in discussing the VLT Data Flow
experience with me.

12.4.7 References
R. Lucas, B. Clark, J. Mangum, P.Schilke, S. Scott, F. Viallefond, M. Wright, “ALMA Software
Science Requirements: Version 1.0 Report”, ALMA Memo #293 (Revised), 2000.

M.C.H. Wright, “Dynamic Scheduling”, ALMA Memo #282, 1999.

12.5 Control Software

12.5.1 Overview

B. Glendenning (NRAO)
Last Updated: 2001-01-22

This section summarizes the design for the ALMA Array control software. At present, it is very
closely modeled on the test interferometer design. As we gain experience with the test
interferometer, the designs will separate (for example, the sub-array facilities for the ALMA array
will be very much more elaborate).

In general, we would describe this design as conventional in the sense that designs like it have
been implemented for many recent telescope control systems. There are no drivers that we know
of that would require us to come up with a radically new design.

Fundamentally, the role of the control software is to take high-level observing commands from
the scheduling system and to turn these high-level commands into detailed control of the array,
finally producing science data products and monitor data archives. In brief, the scope of the
control software is “scheduler to data.”

Almost all devices will be attached to a CAN bus operating in a master/slave (polled) fashion.
The bus will operate at 1Mbps and is capable of at least 2000 polled operations per second (up to
8 bytes of data per transaction). Devices on the CAN bus will be responsible for implementing a
simple in-house protocol to map CAN message IDs to internal device addresses. A few devices
will have other connections, in particular Ethernet.

The CAN buses are attached to (mastered by) a Power PC (PPC) VME based computer running
the VxWorks real-time operating system. There is one ALMA PPC system at each antenna, and
two at the center. One central system is used to master the central CAN devices. The other system
is embedded within the correlator. Centrally there is a general-purpose computer running Linux

 15

that is the overall master for the system, which is known as the Array Control Computer (ACC).
There are also some ancillary systems in the center for, e.g., operators to sit at.

The antenna-based systems are connected to the central systems via point-to-point Gigabit
Ethernet network connections. Commercial off the shelf (COTS) solutions for Gigabit Ethernet
are available that support 40km fiber runs and quality of service (QoS) guarantees. The central
computers are connected with Gigabit or 100Mb (TBD) switched Ethernet on a network
segregated from the rest of the networks site networks.

Logically, the software is partitioned so that control flows in a master-slave fashion from a central
executive who controls high-level (“composite”) software devices that in turn control their
constituent parts. The lowest level software devices are referred to as device controllers, and
represent a proxy for the actual hardware – that is, they communicate with the hardware. Data –
monitor and backend – is collected from the devices by a collecting process in the real-time
computer attached to the hardware, and buffered up for distribution via a publish/subscribe
mechanism to consumers of the data, which include the processes that format and archive the
data. The software is distributed amongst computers so that only the device controllers and
software directly concerned with low-level device activities are on the local real-time computer.
All higher-level software entities are concentrated on the ACC.

Engineering access to devices that are installed on the test interferometer will be implemented via
access to the device controller interface or to the I/O routines directly from engineering
workstations.

The ALMA Time System will establish synchronized switching cycles and mode changes, and
provide time-stamping for the resulting measurements. This must be done across the entire
instrument including the central building and the geographically dispersed antennas.
Additionally, the Time System must be accurately related to external measures of time to
correctly determine the position of astronomical objects of interest. The fundamental time system
of the interferometer is TAI time maintained in a central master clock. Although TAI is the
internal system used by the software, other time systems such as UTC and local sidereal will be
accepted from user input routines. Most devices do not have precise timing requirements. For
those that do, the control software must arrange to have monitor and control commands sent to
the device in precisely defined windows within the pervasive 48ms timing period. This is
accomplished by sending time-tagged commands from the center sufficiently in advance of when
they are required to account for the non-determinism in the network and general-purpose ACC.
The commands are then staged in the ABM until they are required at the hardware. The slave
clocks are given the array time of a particular timing event, and they maintain time thereafter by
counting timing events.

There are several characteristic (“looping”) timescales of interest to the control software:

• 2ms: This is the shortest timescale at which any device will require interaction (the total
power detectors). Timescales faster than this are always handled by hardware.

• 48ms: This is the period of the pervasive timing event sent to all hardware with precise
timing requirements.

• 16ms: Fastest correlator dump time. (Autocorrelations achieve 1ms dump times but are
“bundled” in 16ms increments).

• 1s: This is the fastest timescale for observational changes, e.g., source change or change
in correlator setup.

• >1s: Most devices will be monitored or controlled at rates slower than 1Hz, often much
slower (300s).

 16

Some model values are required for some devices – for example, the correlator will need a delay
model. These calculations will be encapsulated in “model servers” running centrally. The central
control software will call these servers and send a parameterized result (e.g., polynomial as a
function of time) to the device that needs them.

12.5.2 Device (M&C) Interface
M. Brooks (NRAO)
Last Changed: 2001-01-22

12.5.2.1 CAN Interface
The CAN bus has been selected as the primary interface to distributed hardware devices within
the ALMA project. CAN is an ISO standard multi-drop communications medium used
extensively in automotive and industrial applications. A higher layer master/slave protocol has
been defined (ALMA Computing Memo #7) which governs the behavior of slave nodes at the
devices. This bus is hereafter referred to as the ALMA Monitor and Control Bus (AMB).

12.5.2.1.1 Bus Master Nodes
It is required that on any single AMB there be only a single bus master node. Bus master nodes
have been coded and tested for the following hardware and software combinations:

• O/S: VxWorks. SBC: MVME2700, MVME1603, MVME2604. CAN Interface: Tews
Datentechnik TP816 Dual and Single Port PMC CAN modules (available in the US
from SBS Greenspring)

• O/S: Windows NT. Any PC platform with PCI. CAN Interface: National Instruments
Dual Port PCI CAN board.

The following hardware and software combinations are planned for support:
• O/S: Linux. Any PC platform with PCI. CAN interface: Janz CAN-PCI/K2O

It is the responsibility of the ALMA Computing Group to design, implement and test all
code developed for these bus master platforms.

12.5.2.1.1.1 Bus Slave Nodes
There will be two standard interfaces (SI) to the AMB, the AMBSI1 and the AMBSI2. All
designers of hardware interfacing to the AMB should use one of these two; new slave node
implementations may be considered where sufficient justification can be provided. All slave node
implementations must comply with the bus specification detailed in ALMA Computing Memo
#7, which requires that no slave node initiate transactions on the bus unless polled by a bus
master.

12.5.2.1.1.2 AMBSI1
The purpose of the AMBSI1 is to provide a highly flexible interface board with on-board CAN
and device-side I/O consisting of parallel, serial and bit-wise ports. The board would be delivered
to hardware designers with a standard firmware package supporting basic CAN access to the I/O
ports and external bus. The micro-controller on the AMBSI1 will have sufficient spare processing
capacity to run additional user-specific code, such as providing local displays. The ALMA
Computing Group would be responsible for developing such code in conjunction with the

 17

hardware developer and for integration testing the product to ensure that the user code does not
interfere with the CAN slave code. All AMBSI1 boards should be similar in hardware, and
identical in size and connector arrangement. Code may be loaded into on-board flash memory by
means of the CAN bus or the local RS232 port.

The CAN bus servicing code is written to be entirely interrupt-driven. It runs only in response to
interrupts from the CAN controller, and those interrupts are set to the highest possible priority (in
the Infineon C167, this is interrupt level 15, group level 3). When not servicing an interrupt, the
processor executes an idle loop. User-written code may include a function to execute from the
main idle loop, or it may simply consist of the callbacks for CAN message reception interrupts.

12.5.2.1.1.3 AMBSI2
This device would perform the function of a CAN bus to Serial Peripheral Interface (SPI)
converter. The AMBSI2 is designed for use in systems which either have their own
microprocessors or need a very minimum amount of I/O to the CAN bus. It is currently proposed
that the resulting subsystem would require +5 Volts at 200mA max and occupy a small daughter
PCB of approximately 1.4 by 1.8 in. The PCB would be either mounted to the main PB Board by
several SIP headers that also serve as the I/O connectors for the subsystem.

The board would have a unique serial number (programmed into the microprocessor or using the
same Dallas part as the AMBSI1, TBD). There would be about 16 bytes of RAM which could be
accessed by either the CAN bus or the SPI port. An ATN output would indicate when RAM
contents had been altered by the CAN bus. The unit will have its own oscillator and reset
circuitry, completely independent of the host microprocessor. All of the software in the
subsystem would be developed by and be the responsibility of the software group.

In addition to providing the CAN interface, the unit would also provide the interface for both the
RESET and TIMING pulses which come in through the AMB DB-9 connector or module wiring
as RS-485 and be available as TTL signals to the application circuitry.

12.5.3 Correlator
J. Pisano (NRAO)
Last Revised: 2000-11-22

12.5.3.1 Summary
This section describes the ALMA correlator control computer hardware and software. This
computer system is meant to control the baseline ALMA correlator and process its lags. The real-
time computer system consists of two parts. The control computer, a VME PowerPC computer
running VxWorks, configures and monitors the ALMA correlator via a CAN interface. The data
processing computer, a Beowulf cluster of COTS PCs running Linux with customized device
drivers, interfaces to the ALMA correlator LTAs via a FPDP interface and converts raw lag
results to spectra.

 18

12.5.3.2 Correlator Computer Hardware Overview

Ethernet

VME Correlator
Control Computer

ALMA Correlator

High Speed Fiber Network
(e.g., ATM)

FPDPCAN

Beowulf Data
Processing
Computer

Data Collector
Computer

Array Control
Computer

Figure 5

Figure 5 shows a block diagram of the correlator computer relative to other systems to which it
interfaces. The Array Control Computer (ACC) acts as a master to the correlator control
computer issuing commands to the latter. The Data Collector Computer accepts well-defined
spectral data sets, applies further processing (flagging bad data, etc.), writes these processed
results to a distribution format and forwards them to an archive.

The Correlator Control Computer (CCC) is a Motorola MV-2700 PowerPC computer which runs
the VxWorks real-time operating system. Its primary function is to translate commands from the
ACC via an Ethernet connection into a format understood by the ALMA correlator using the
CAN protocol. The CCC serves as a CAN master to the slave nodes in the correlator hardware.
The kinds of commands that the ACC issues include correlator configuration commands, monitor
requests and correlator integration control, i.e., starting and stopping of integrations.

The Correlator Data Processor computer (CDP) accepts raw lags from the ALMA correlator
hardware via a 32-bit parallel bus (Front Panel Data Port - FPDP) from the LTAs, converts them
to spectral results and transports them to the Data Collector computer via a high-speed link. The
CDP must accept lags and perform FFTs at extremely high rates. It has been estimated that the
data transfer rates can range from 0.5 MB/second to over 3GB/s and that processing rates can
range from 25 MFLOPS (million floating point instructions per second) to 25 GFLOPS.

Currently a straw man design of a Beowulf (see http://www.beowulf.org/ for more information)
cluster includes the following items:

• Rack-mounted computer(s) to support 32 FPDPs interface directly to each compute node.

• 16 - 32 Dual processor Pentium III (or equivalent) nodes

• Gigabit Fiber and router(s), e.g., MyraNet, Giganet, InfiniBand to interconnect each node (the
Beowulf network) in a multi-drop configuration. A possible option for this is the “Flat
Neighborhood Network” topology – see http://aggregate.org/FNN/ for more information.

 19

• High-speed network interface to the Data Collector computer in order to support the burst
data rates from the correlator to the Data Collector computer of 60 MB/sec.

• One or more dedicated Beowulf nodes that act as bridges between the Beowulf network and
the network.

There exists a link between the CCC and the CDP computer systems that will most likely be
Ethernet. This provides a communication link between the ACC and the CDP allowing the CCC
to send configuration or timing information to the CDP.

12.5.3.3 Correlator Computer Software
The CCC software will be written in C++ as a multi-tasking application utilizing the VxWorks
RTOS as there are many time-critical functions in controlling the ALMA correlator.

The CCC software will have the following properties:

• It will utilize the ALMA Common Software (ACS) libraries for basic software services that
include peer-to-peer communications, logging of errors and messages, time services, events
and alarm systems all of which incorporate the CORBA architecture.

• It will be aware of the 48 ms array time Timing Events in order to synchronize its operation
with other hardware and software components in the array.

• It will be capable of controlling the ALMA correlator on 16-ms time boundaries that are the
basic time ticks of the correlator hardware.

• It will be able to support the ALMA correlator’s specification to handle up to 16 sub-arrays
each having a specific set of antennas, bandwidths, correlation modes and dump times – see
ALMA Memo 294, The ALMA Correlator Long Term Accumulator for details.

• It will be multi-threaded allowing high priority, time critical operations to proceed with out
interruption from lower priority, non-critical operations to proceed without interruption.

• It will utilize the CAN protocol to communicate commands to and to retrieve monitor data
from the ALMA correlator.

• It will follow the general characteristics of a “Device Controller” which is a standard ALMA
control computing architecture defining how computer-controlled devices operate.

12.5.3.4 Data Processor Computer Software
The CDP software will be written in C++ for Linux. The software architecture will take
advantage of the parallelization of the hardware. Each “data spigot” of the LTA will be connected
to a Beowulf compute node to handle set of lags for a given baseline. FFTs will then be run on
these lags and sent to the Data Collector computer.

The CDP software will have the following properties:

• It will be able to support all of the correlator modes available to the one quadrant of the
ALMA baseline correlator.

• It will be capable of supporting the minimum correlator dump times of 16 ms for cross
correlations, 16 1-ms auto correlations every 16 ms.

• It will be capable of delivering an output data rate of 6MB/s with a burst rate of 60 MB/sec.

 20

• It will use the FFTW library from MIT (see http://www.fftw.org for details) to compute the
FFTs. This is an extremely fast FFT engine especially if there are many FFT computations
done on similar data sets. Also there is a version of FFTW which can be run on a parallel
computer architecture using MPI, although at this time we do not think that this feature will
be necessary.

• It will allow the optional processing capabilities of:

• Van Vleck correction
• Hanning Windowing
• Spectral Decimation
• Spectral Averaging
• Apply coarse and fine geometric delays for cross-correlations
• Sum all channels together to provide a single value.

• It will utilize the standard Message Passing Interface (MPI) – see http://www.mpi-forum.org/
for more information – utilized by many Beowulf systems. It is envisioned that there will be
little peer-to-peer communication as each compute node will have all of the lags for a given
baseline and will not need to transmit lags between compute nodes. It is likely that the master
node will need to communicate information to the compute nodes including configuration
and status information and possibly timing information.

• It will have a set of software components that extract lags from the ALMA correlator via the
FPDPs and distribute the lags to the appropriate compute nodes. As these data rates are
extremely high, this will most likely be a real-time embedded computer with access to the
Beowulf network.

12.6 Telescope Calibration
R. Lucas (IRAM)
Last Changed: 2000-09-28
This section outlines the software needs of the operations to be performed in order to determine
the calibration parameters that will be needed to successfully execute and reduce standard
astronomical observations. These operations will be under the responsibility of the operators and
staff astronomers. They may require all the antennas, but in many cases, only a sub array of
antennas will be used. Most will actually be performed by observing standard astronomical
sources, so many/most of the general science requirements apply; in particular the data will be
processed through the pipeline, and the results fed back to the observing processes; the raw data
will be archived as science data. These calibration operations will be implemented in the same
way as the standard observing modes. A complete list of those operations cannot be made at this
time, since the general calibration plan will be subject to evolution during the next years and even
the full life of the array.

Among those operations we may cite:

• Pointing calibration sessions:
A set of pointing calibrations are performed on several pointing calibrators all across the
sky. This needs to be done after some antennas have been moved, but also for periodical,
systematic checks. Occasionally one should measure the relative pointing of the different
frequency receivers. Pipeline data reduction will be the same as for the standard pointing
measurements during project observations; then a least square determination of the
pointing model parameters is performed for each antenna involved.

 21

• Baseline calibration sessions:
A set of cross-correlation scans on several calibrators all across the sky are performed,
for instance some antennas have been moved (but some antennas which have not been
moved have to be included in the sub-array). The data reduction is performed by a least
square fit of baseline offsets to the observed phases.

• Delays calibrations:
They are needed for most interferometric observations. One observes a strong point
source calibrator), in the observable sky, for a very short time to measure the relative
delays to the antennas by fitting a straight line to the frequency dependence of the
observed phases.

• Beam shape calibration
This involves holography measurements on cosmic sources, to monitor the beam shape
and the focusing of the antennas, for instance as a function of elevation.

A later revision to this section may also include the processing of array-wide atmospheric
transparency monitoring (FTS?).

12.7 Post-Processing Software
B. Glendenning (NRAO)
Last Changed: 2000-09-28

The AIPS++ package (http://www.aips2.nrao.edu) will be developed as required to cope with
general ALMA data processing needs. The ALMA data products will be written in a FITS-based
format so that other packages may be used for special-processing or user preference. This section
will be expanded in a later revision.

12.8 Common Software
G. Chiozzi (ESO)
Last Changed: 2000-09-28

12.8.1 Overview
The ALMA Common Software (ACS) is located in between the ALMA application software and
other basic commercial or open source software on top of the operating systems. It provides basic
software services common to the various applications (like antenna control, correlator software,
data pipelining).

ACS is designed to offer a clear path for the implementation of applications, with the goal of
obtaining implicit conformity to design standards. In a distributed environment like the one of
ALMA, the application software will then become more uniform and therefore more
maintainable.

The main users of ACS will be the developers of ALMA applications. The generic tools and
GUIs provided by ACS to access logs, Configuration Database, active objects and other
components of the system will be also used by operators and maintenance staff to perform routine
maintenance operations.

It is intended to develop ACS incrementally via periodic releases. Automatic regression tests are
planned in order to achieve that ACS becomes a reliable and robust platform.

 22

12.8.2 Technologies
The choice of the technologies used in the ALMA Common Software, and as a consequence on
the whole ALMA Software is based on the following initial and explicit decisions:

• Select state of the art but consolidated and widely accepted technologies.

• Adopt an Object Oriented architecture

• Share software rather than re-invent it

The ALMA Common Software is designed based on the experience of the ALMA partners in
their previous projects, but is implemented using the technologies and architectural concepts that
have found wider industrial acceptance in the last few years.

At the very core is the decision to use CORBA[0][0]. The reasons for using CORBA are in short:
Object Orientation, support for distributed systems, platform independence, it is a communication
standard, it provides a variety of services.

The ALMA software will have to be as much as possible independent from the operating system
and will actually run on multiple platforms (Linux and other flavors of UNIX and VxWorks). We
have therefore decided to select the Adaptive Communication Environment (ACE)[0] as the basic
multi-platform software. This package provides portable operating system interface services and
implements a wide set of classes specifically designed for the implementation of distributed real-
time systems.

ACE is also the core of The ACE ORB (TAO)[0], a high performance real-time CORBA
implementation.

The Object Model for ACS is based on the concept of Distributed Object[0], that identifies three
entities:

1. Distributed Object - Instances of classes identified at design level in the ALMA system, are
implemented as Distributed Objects. In particular, at control system level, Distributed Object
is the base class used for the representation of any physical (a temperature sensor, a motor) or
logical device in the control system.

2. Property - Each Distributed Object is characterized by dynamic values, called Properties,
that are monitored and controlled (status, position, velocity, electric current).

3. Characteristic - Static data associated with a Distributed Object or with a Property,
including meta-data such as description, type and dimensions, and other data such as units,
range or resolution are called Characteristics.

The choice of CORBA for the implementation of Distributed Objects and of all services that are
part of ACS makes it possible to have every software operation available in a transparent way
both locally and at the Control center in San Pedro. This applies also to all data, logs and alarms.

12.8.3 Services
The following UML Package Diagram shows the main services provided by ACS, represented by
the packages that implement them.

 23

CORBA Middleware

Command
System

Event System

Indirect value
retrieval

Error SystemLogging System

ACS Application
Framework

FITS libraries Astro libraries UIF libraries

Applications

Distributed
Object

Scripting

Alarm System Sampling

Time System

Data channel
Property access methods:
direct value retrieval
Commands are method calls

Monitoring
System

ACE

Packages have been grouped in layers in order to limit as much as possible the relations between
the layers (not shown in the diagram): package are allowed to use services provided by other
packages on the lower layers and on the same layer, but not on higher layers.

At the very bottom:

• Distributed Object: This package provides the IDL interfaces for the Distributed Object
class, for the Property classes to access values of all basic data types (like integer and floating
point numbers) and for Characteristics. It provides also the basic server-side CORBA
implementation for these same classes. Server-side applications can use directly these classes
or implement sub-classes for specific I/O devices. Client-side applications use the IDL
interfaces to access all Distributed Objects, not being concerned by the specific
implementation details of the server.

• Data Channel: implementation of a data pipe to transfer efficiently continuous flows of data.
It is used by many of the higher level services.

The second layer provides essential services that are necessary for the development of any
application:

• Event System: implementation of data retrieval by event, monitors and periodic timers.

• Logging System: API for logging of data, actions and events. Transport of logs from the
producer to the central archive. Tools for browsing logs.

 24

• Value retrieval System: Value retrieval and archiving of system and engineering values on a
fixed periodic basis or on the occurrence of specific changes in the value.

• Error System: API for handling and logging run-time errors, tools for defining error
conditions, tools for browsing and analyzing run-time errors.

• Command System: Tools for the definition of commands, API for run-time command syntax
checking, API and tools for dynamic command invocation.

• Time System: Time and synchronization services.

The third layer provides services that are not strictly necessary for the development of prototypes
and test applications or that are meant to allow optimization of the performances of the system:

• Alarm System: API and tools for configuration of hierarchical alarm conditions based on
Fault Tree analysis, API for requesting notification of alarms at the application level, tools for
displaying and handling the list of active alarms.

• Sampling: low-level engine and high-level tools for fast data sampling (virtual oscilloscope).

• Indirect value retrieval: low-level engine and configuration tools for data mirroring and
caching.

The fourth and last layer provides high level APIs and tools. More will be added in the future.
The main goals for these packages is to offer a clear path for the implementation of applications,
with the goal of obtaining implicit conformity to design standards and maintainable software.

12.8.4 References
CORBA - Object Management Group home page (http://www.omg.org/)

Advanced CORBA Programming with C++, M.Henning S.Vinoski, Addison-
Wesley, 1999

ACE, Adaptive Communication Environment
(http://www.cs.wustl.edu/~schmidt/ACE.html)

TAO, the ACE ORB (http://www.cs.wustl.edu/~schmidt/TAO.html)

Implementing Distributed Controlled Objects with CORBA -
M.Plesko, PCs and Particle Accelerator Control Workshop, DESY, Hamburg, 1996
(See http://kgb.ijs.si/KGB/articles.htm for this and other related papers).

12.9 Software Practices
B. Glendenning (NRAO)
Last Changed: 2000-09-28
ALMA has adopted a software process based on the Rational Unified Process (RUP). It is using
the Unified Modeling Language (UML) as the software design language. It will use the CORBA
Interface Definition Language (IDL) as the basis for software/software Interface Control
Documents. It uses both configuration control and version control. These items and others will be
spelled out in greater detail in a later release of this document.

