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12 Computing 
 
 

Revision History:  
2000-09-29: Complete rewrite. 
2000-10-06: Correct some typos and phrasing. 
2000-11-22: Update data rate requirements, ZASI description. 
2001-01-22: Reflect new AMBSI names, replace ATM with Gb Ethernet. 

 

12.1 Introduction 
B. Glendenning (NRAO) 
Last Revised: 2000-11-22 
This chapter describes the operational software required for ALMA. This includes real-time and 
near-real-time software to monitor and control hardware devices, software to schedule the array, 
software to format the data suitably for post-processing, software to archive and restore the data, 
software to perform fundamental calibrations (e.g., pointing) required to operate the array, 
commissioning software (e.g., holography), and software to implement a near-real-time imagine 
pipeline. It does not generally include post-processing software, firmware that is "inside" the 
device (excepting the correlator), or engineering test software that is not needed during 
operations. 

ALMA Computing, principal requirements 

Sustained data rate, science data 6 MB/s (Average) 
60 MB/s (Peak sustained) 

Image pipeline First-look images produced automatically for 
standard observing. 

Dynamic scheduling 

Nearly automatic scheduling of the array, 
accounting for current weather and other 
conditions, to optimize the scientific 
throughput of the array. 

Archiving 
Networked archive of all ALMA raw science 
data and associated calibration data and derived 
data products. 

 

12.2 Science Software Requirements 
R. Lucas (IRAM) 
Last Revised: 2000-11-22 

The scientific requirements for ALMA software have been described in ALMA memo 293 rev.1), 
from which we reproduce here the introductory remarks. The reader is encouraged to read this 
report for details. A new version of this report is being prepared, which will include more formal 
requirements and execution scenarios (Use Cases). 



 2

The operation of ALMA will have to deal with a larger variety of projects than previous 
instruments: on one hand at long wavelengths  (1-3 mm) due to the high sensitivity and quality of 
the site, and a long experience with millimeter-wave interferometry, we can predict with 
reasonable certainty the observing modes that will be used, the relevant observing strategies to 
schedule the instrument, and the data reduction techniques. On the other hand at the highest 
frequencies (~300µm) no array has been operational yet; we plan to rely on techniques such as 
radiometric phase correction, fast phase switching and phase transfer between frequency bands, 
that have been demonstrated, but not applied with the operational scale that we foresee for 
ALMA. We thus will have to combine in the software a high level of automation, needed to deal 
with the large information rate that will be available, with a high level of flexibility at all levels to 
be able to develop and implement new observing methods and reduction procedures. For simple 
projects, the astronomer with little or no experience of radio techniques should be able to use the 
instrument and obtain good quality results; however, experts should easily be able to perform 
experiments we do not even foresee today. 

The expert user/developer will need to be able to send direct commands to the instrument through 
a simple, easily editable command language.  Atomic commands in a script language will directly 
send orders to the basic software elements controlling the hardware: antenna motion, instrument 
setup, or transmitting parameters to the data processing (pipeline). The script language will 
support loops, structured conditional tests, parameterized procedures, global variables and arrays 
... These scripts, once fully developed and tested, will evolve into the basic observing procedures 
of the instrument. 

The general user will need more user-friendly graphic interfaces to many components of the 
system. They will propose several templates, corresponding to the available observing modes, 
and provide a simple way to pass astronomy parameters to the basic observing process and to the 
corresponding data reduction procedures of the pipeline. Input parameters will preferably be 
expressed in terms of astronomical quantities, which will be translated into technical parameters 
by sophisticated configuration tools. 

Proposal submission will be in two phases, the first before proposal evaluation, the second to 
provide information needed for the actual scheduling and observation.  

We believe that dynamic scheduling is an essential feature of the instrument and should be 
installed from the very beginning of its operational life.  Though the site is undoubtedly one of 
the best for submillimeter observations, it will only be usable at the highest frequencies for a 
fraction of the time; to improve the total efficiency we must be able to make the best use of all 
weather conditions, by selecting in quasi-real time the project most suited to the current weather 
and to the state of the array. This means we should always be able to observe a given project in 
appropriate weather conditions. This philosophy can be extended to the point where a given 
project can change its own observing parameters according to variations in observing conditions 
(such as atmospheric phase rms).  

The whole real-time system will be under control of a telescope operator, through a specially 
designed interface. This must provide an overview of what observation is occurring, the state of 
the instrument, and observing conditions on the site, and should enable the operator to react to 
any unexpected event. A general monitoring interface must be also accessible through the 
network. 

The instrument should produce images, aiming to be final for most projects, even when projects 
are spread over several sessions and configurations, and/or include short/zero spacings.  For this 
purpose an on-line pipeline is required. It will include calibration of the array itself, to reduce 
measurements of baseline, delay offsets, and determine pointing models during specific sessions. 
During standard observing sessions reference pointing and focusing measurements will have to be 
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reduced, with fast loopback of results to the observing process; the phase fluctuations on the 
phase calibrators must be evaluated, with a feedback to both the real time process and the 
scheduler.  Calibration will be applied on-line and maps/datacubes will be produced according to 
data processing parameters input by the observer. Single-dish observing sessions will also be 
reduced on-line. The pipeline must be able to reduce on line the quasi totality of the data, which is 
expected to be produced at an average rate of 6MB/s, with a peak rate of 60MB/s for some 
observing sessions. 

For most projects the data pipeline will produce results in a form suitable for quality evaluation, 
and astronomical processing, hopefully leading to fast publication. Uncalibrated UV data will be 
archived together with the calibrations curves and the resulting images. The archive should enable 
fast access to the observing parameters and full reprocessing of the data set with improved 
processing algorithms. 

A general requirement is that the various parts of the system should be developed in a highly 
consistent way, from the very beginning of design; they may however be installed progressively, 
provided the critical elements are implemented first. 

12.3 Architectural Overview 

12.3.1 Physical 
B.E. Glendenning (NRAO), G. Raffi (ESO) 
Last Changed: 2001-01-22 
As shown in Fig.1, the ALMA computers and networks are organized around a few geographical 
areas: 

- Antenna computers, which are repeated and essentially the same at the 64 antennas  

- Central computers at the ALMA site, with central control and coordination functions linked 
to the whole array. 

- Operation Support Facility (OSF) computers to offer user and maintenance interfaces to the 
whole array from San Pedro. 

- Data centers in Europe and USA with archiving and remote access functions 

- Other computers accessing ALMA via Internet. Although these should be seen as external to 
the ALMA project, their presence and functions might have to be supported via certain 
categories of software and so they have to be considered. 

It is important to note that operation at OSF is considered as local operation, i.e. all normal and 
maintenance operations are available at the OSF with full functionality and performance. The 
only reason to perform maintenance at the ALMA site has then to be the need for physical access, 
replacement or movement of parts, but not any limitation in the capabilities offered at the OSF. 
These should include video and audio links to the central computers at the ALMA sites and 
possibly to the antennas. 
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Figure 1 - Overview of ALMA Computer Systems and Networks 
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Figure 2 - Layout of computers at the site 

 At each antenna there is an Antenna Bus Master (ABM) – a VME Power PC based VxWorks 
computer. Its principle role is to provide real-time control of the devices at the antenna based 
upon infrequent time-tagged commands from the center. It serves also as a router for the antenna 
Ethernet segment. 

All devices with computer interfaces are attached to a Controller Area Network (CAN) bus, 
through which they are controlled and monitored. More details about the properties of these 
interfaces are described under Monitoring and Control. A particularly important device is the 
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Antenna Control Unit (ACU) that is provided by the antenna vendor. It is implemented as a 
VME/PPC/VxWorks computer. While like any other device it is controlled over the CAN, it also 
has an Ethernet interface for software maintenance and the setting of static parameters that do not 
need to be changed in normal operations.  

It is assumed that data transmission from the total power detectors and holography backend is 
done over Ethernet.  

The optical telescope (for the antennas where this will be mounted) is also commanded via the 
CAN bus. Its video output will be digitized and transmitted over Ethernet and via the ABM to the 
central computers. 

Each ABM is connected to the central systems via a point-to-point Gigabit Ethernet network that 
terminates at a switch. The switch is in turn connected to a high-speed switched network on 
which all central ALMA computer systems required to operate the array are attached.  

At the center there are two real-time computers. The Array Real-Time Machine (ARTM) plays 
the role of the ABM, providing local real-time control of its attached CAN devices. The 
Correlator Control Computer (CCC) is the other central real-time computer. It provides the 
interface for the correlator, and provides detailed control of the correlator hardware. Both the 
ARTM and CCC are VME/PPC/VxWorks based systems. 

The coordination function is implemented via the Array Control Computer (ACC), which is a 
high-end workstation running the Linux operating system. It is responsible for controlling all 
hardware in the array (indirectly through the ABM, ARTM, and CCC computers) under the 
command of a high-level observing script. It also runs various ancillary software such as model 
(e.g., delay) servers, data formatting, etc. If necessary for performance reasons the ACC functions 
could readily be split into multiple computers. 

There will be a few general purpose Linux systems on the switched network for operator access, 
astronomical data analysis, software development, and the like. Computers with Labview will be 
used for engineering and maintenance purposes. 

Data from a  meteorological data station will also be available at the OSF. 

12.3.2 Logical 
G. Harris (NRAO) 
Last Changed: 2000-09-28 

The ALMA Control Software System has a number of concepts, among them are session, 
sequence and data products. The Conceptual Diagram portrays some of these important notions. 
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Figure 3 - ALMA Control Software System - Conceptual Diagram 

First of all, there is a session manager or executive, described below, which creates observer work 
sessions and allocates resources such as antennas, correlators and post processors to them. 
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This observer session will perform observations and perform other processing. It is directed by a 
programmatic script created in advance by the observer, or entered directly in interactive mode 
through a GUI or commands. These commands will expand through the action of the software 
system into a sequence of device commands. 

While operating an observation, for example, control commands will be issued to a software 
structure as shown in the shaded box labeled Observation. This structure operates the sub-array of 
antennas and correlator as a unit, issuing device operations in a timed sequence. Then later, the 
same session might drive a Post Processing operation to process the raw data placed in the 
archive by the Observation activity and make it into finished images. 

The Observation box shows some of its major activities by component. First, the commands flow 
down the structure of sub-array and antennas in a hierarchical manner. The further hierarchical 
structure of device groups and devices, shown in the composite and leaf device nodes, leads us to 
name this structure a control tree, as shown in later drawings. Each tree has groups of devices, 
such the receiver group with receivers, filters, LOs and IFs. Ultimately, the software tree reaches 
down to leaf nodes connecting to hardware. 

As the observer operates the instrument, the observer's session will create Outputs as shown in 
the diagram. There will be logs, both of individual sessions, and of the system as a whole. There 
will be raw output from an observation plus processed images and calibrations. Some of these 
activities may be in parallel, allowing feedback into observation parameters. 

The system also needs to operate independently as observer sessions come and go, keeping logs 
and equipment status, performing maintenance and calibration and other activities. Supporting 
this is Data Collection and Recording, which operates at the system level. This is shown by 
another shaded box in the diagram. Data collection from the equipment is not dependent on a 
control session, nor vice versa.  

The collection process streams information from the antennas to central storage and makes it 
available for the system as well as the observer sessions when they are operating. There is 
equipment information: temperatures, frequencies, etc.. There is science data processed by the 
correlator. There is also log information, constantly from the system and operator, and 
periodically from observer work sessions. There is a method, described below, to subscribe to the 
information published by the data collection process. 

Now moving from the general concepts of session, sequence and data products, look at the details 
of session operation as shown in the figure for Logical Architecture.  
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Figure 4 - ALMA Control Software System Logical Architecture 

First of all, ALMA has a supervisory program called the system executive. The executive 
initializes the instrument, creates processes for observers called work or observing sessions, 
allocates resources, and launches services which collect and process data. It also supports 
operator activities. 
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The action is similar to initializing an operating system: 

• During startup, a resource manager locates and initializes the devices, sometimes using 
information from a configuration control database.  

• The system processes are started and necessary communications connections established, 
making devices available to processes in the system. This is especially important for services 
such as object component naming, which supports various parts communicating with each 
other. 

• The initial allocation of these resources is performed, to a resource pool or to an observer. 
• Then observer processes are started to use the resources and perform work. These are 

typically called sessions.  
There may be many observer sessions, operating simultaneously. There may also be additional 
operator work sessions, as the executive will also provide for some maintenance and 
configuration activity.  

Using the logical architecture diagram, we can see how this will operate. The operator will start 
the executive after operating system startup.  

The executive will first start the resource manager. The resource manager will be responsible for 
using the configuration database to initialize the antennas. Each antenna will be completely 
initialized, including the control tree and Antenna Bus Master [ABM], and allocated as a unit to a 
work session. This process will also register all the objects [devices]  in the antenna in the object 
naming system. 

Once these devices can be identified, the executive can also start the data collection process in 
each antenna's ABM computer. The ABM collector concentrates the equipment information from 
about a thousand points per antenna. There is also a central collector, which gathers the data from 
each antenna. [There will be 64 antennas.] This is called a publish/subscribe mechanism. Once 
the data is collected into the central Array Control Computer [ACC], other processes may 
subscribe from this central publisher. 

With all antennas initialized and the data collector operating, the executive can start work 
sessions for the observers and give them appropriate resources depending on the desired 
observing mode. When a work session terminates, the executive will clean up the resources and 
possibly re-initialize them or place them in a known state for another session. Operator sessions 
or direct executive commands may be used for various standard activities, parking or stowing, 
shutdown, special calibrations etc. 

[Now look in the drawing at the section labeled SESSION.]  

Using the work or observing session, the observer enters commands or retrieves stored commands 
on the system if in interactive mode. If in automatic mode, prepared observing scripts are 
executed in the order presented by the system scheduler. The observing commands are 
propagated into the SubArrayControl and then to each antenna through a control tree, a software 
construct representing the devices on the antenna.  

The method by which this is done is called CORBA [Common Object Request Broker 
Architecture], an industry standard. Use of distributed object oriented technology is quite 
extensive in this instrument. Every possible piece of the software is object based, from the 
configuration data, to the scripts and their functions, to the devices in the control tree and even to 
the hardware device control points on the antennas. This facilitates the creation, management and 
execution of the control software. 

Some devices are simple and others are treated as a group. The letter D inside the control tree 
triangle represents a Device, perhaps a composite hierarchy of receiver parts such as LO, filters, 
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etc. The hierarchy of devices, represented by the triangle, expands commands as they propagate 
through the control tree. Sometimes a simple command by the observer results in many 
commands to the bottom level devices. 

Some software devices are in the central computers, in what may be called the logical time part of 
the system. Other devices are in external computers such as the correlator, the Array Real Time 
Machine [ARTM - the time server] or even out on the antennas, next to their associated physical 
devices in what we call the ABM [Antenna Bus Master]. These external computers are 
represented by dotted lines and operate in real time. The dotted line between the control tree 
of an antenna and its ABM out on the antenna represents the transition from logical time to real 
time. 

Once commands reach the ABM, they go to appropriate Monitor and Control points [M&C]. 
Monitor points read the value of a single hardware access point and Control points can set the 
value of a single hardware access point.  

Sometimes a behavior is needed in real time which physical devices do not have. Rather than 
trying to perform this more complex behavior remotely from the control tree, a software construct 
called a device controller [DC] is used. For example, a nutator sequence may be given as a single 
command from the command tree resulting in many actions by a device controller in the ABM, 
all synchronized in time. 

Another feature of this architecture is the decoupling of the control system from the data 
recording. The control system is not dependent on the data monitoring and recording system. Or 
vice versa. Equipment may be monitored even when not being used for observations. Just as the 
antennas are configured and initialized before giving them to a work session, so also is the data 
collecting system turned on and initialized by the system executive.  

The correlator is accessed on two levels. First it is configured on an array basis and commanded 
as shown in the drawing by the SubArrayControl at the subarray level As data coming from the 
receivers is sent to the correlator, it is processed and the correlator output goes into the science 
data. 

Another independent computer with support electronics is the Array Real Time Machine 
[ARTM]. It coordinates with external clock sources, internal frequency generators and other 
equipment to provide a timing standard to the array. 

When operating in interferometric mode, a single session drives many antennas constituting a 
sub-array. The SubArrayControl distributes the current command from session control to the 
antennas, correlator, etc.. Generally all antennas receive the same command, but each can also be 
individually addressed. Any per antenna differences in processing a command are handled by 
each antenna's control tree and ABM.  

Other activities not shown in this diagram for simplicity are:  

• Display sessions using the information from the central data publisher,  
• Observing proposal preparation, 
• Observation Scheduling and Dispatch, 
• Image Processing Pipeline, and the 
• Feedback from monitor data, and Image Processing to observations 
• Archiving and distribution of data. 
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12.4 Data Flow Software 
J. Schwarz (ESO) 
Last Changed: 2000-11-22 

The Data Flow Software will encompass the end-to-end processing of an ALMA Observation, 
from the preparation of a proposal by a prospective observer, through to production and archiving 
of cleaned images/data cubes from the array. Support will thus be provided to: 

• The proposer/observer; 
• The proposal reviewers and those responsible for granting ALMA observing time; 
• The array operations staff; 
• The archival researcher. 

The Data Flow Software will provide: 

• Tools for the preparation of observing proposals; these tools will allow the proposer to 
specify his/her scientific requirements insofar as possible. The tools themselves will then be 
responsible for translating these requirements into array-level configurations and observing 
scripts. 

• A dynamic scheduler to maximize the observing efficiency of ALMA in service mode. 
Observations will be scheduled based on assigned scientific priority, as well as appropriate 
match to the existing observing conditions. Some (user-specified) observing parameters may 
be adjusted to take account of changes in these conditions. 

• A near-real-time pipeline, capable of feeding back results to the observing process, and of 
producing images that should be of final quality in the majority of cases. 

• An archive to store uv-data, images/data cubes, calibration data, observing programs 
(including proposals, scripts, and observation parameters). 

12.4.1 Observing Proposal & Programme Preparation 

In order to ensure that ALMA is accessible to the largest possible segment of the astronomical 
research community, the SSR has decided that prospective observers should be able to input their 
scientific desiderata (e.g., angular resolution, spectral resolution, field of view, and signal to noise 
ratio) and that the software tools provided by the Observatory should evaluate these for 
consistency and feasibility, and derive the necessary Array parameters--from configuration 
through correlator setup and selection of calibration sources to total observing time. 

At the same time, there will be a mode that allows experts to bypass this feature of the tool 
entirely, specifying in detail the low-level observational parameters to be used. The SSR 
envisages that a scripting language will enable direct control of the Array. Moreover,  
modification of accepted programmes is to be allowed up to the time that a Schedule Block 
begins execution. 

How Observatory Operations will coordinate these two types of programmes is TBD; in the case 
of VLT Service Observing, only a limited set of templates are available to the Observer, and low-
level control of the telescope by, for instance, a user’s ad hoc script, is not allowed. Observation 
Blocks, the basic units of VLT observing programmes, are vetted individually by the operations 
staff. Modification of accepted Phase II Programmes by the observer is only allowed under 
special circumstances. 

12.4.2 Observation Scheduling 
Although interactive observing will be supported by ALMA, it is expected that the Array will 
usually be operated in Service Mode. As in the case of the VLT, the argument here is that ALMA 
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is so expensive an instrument that every effort should be made to maximize its observing 
efficiency. 

In spite of the existence in the observing community of sophisticated software scheduling tools, 
scheduling remains as much an art as a science. At the VLT, where the Spike inference engine 
developed for the Hubble Space Telescope was adopted for long- and medium-term scheduling, 
the final decision about which Observation Block is next to be executed is determined manually 
by the Operations Staff. Spike is used primarily as a visualization tool at the VLT. It is quite 
complex, and as it is written in Lisp, requires that comparative rarity, a Lisp programmer, to 
maintain it. A commercial version, written in C/C++, is also available, and its purchase might 
alleviate the maintenance problem. Until this is done at the VLT, automatic scheduling is likely to 
remain a low priority. The VLT Operations Team has not found the manual scheduling procedure 
to be an excessive load on their manpower resources so far. 

On the other hand, the radio astronomy environment may be more hospitable to dynamic 
scheduling. Wright (1999) described his dynamic scheduler for BIMA, which selected 
observations on the basis of weather conditions, as a technical success. The algorithm for ALMA, 
which will include the possibility of modifying some observational parameters (e.g., dwell time 
on phase calibrators) in response to changes in atmospheric conditions, will be more 
sophisticated, however. Such decisions will depend upon near-real-time feedback from one of the 
data reduction pipelines (see below). 

Although scheduling “what comes next” may be relatively simple, VLT experience demonstrates 
that what seems like tonight’s optimal solution may cause problems (e.g., a schedule “hole”) 
weeks or months later. A scheduling tool capable of generating possible timelines over longer 
periods than just one night is likely to be needed. Moreover, no schedule can be optimized over a 
several-month period unless the awarding of telescope time takes into account the distribution of 
hour angle ranges and observing conditions that will be available. 

12.4.3 Observation Execution & Interface to the Array Control Software 
The interface to the Array Control Software is not yet defined and will be discussed in a future 
revision of this document. 

12.4.4 Near-real-time Pipeline Processing and Feedback to Operations 
There is a requirement to feed back the results of e.g., pointing and phase calibrations to 
Observatory Operations in near real-time. Some form of quick-look imaging will also be needed, 
though definitive image production will probably need to wait for the results of calibrations that 
may not be available simultaneously with the science data. 

Design and performance of the pipeline will be discussed in a future revision of this document. 

12.4.5 Archiving and Final Data Reduction 
The ALMA Archive must serve two purposes: 

1. To support observatory operations and to provide the observer with the data he/she wants and 
needs in a timely fashion. 

2. To support archival research by users other than the original observer. 

 

Whether this will require two archives, a “short-term” and a “long-term” one remains to be seen. 
The SSR has proposed allowing each observer to decide which data he/she wants archived, 
subject to a limit determined by the correlator data rate (over the long term this is estimated to be 
6 Mbytes/sec). If both corrected and uncorrected uv-data are to be retained, the effective rate goes 
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to 6 Mbytes/sec, implying that of order 180 Terabytes must be archived each year. In any case, an 
archive based on individual observers’ decisions is likely to be very inhomogeneous, and thus 
may not be suitable as the official ALMA long-term archive. 

In addition to uv-data, the archive will include images produced by the automatic pipeline 
reduction system, as well as complete information concerning the conditions under which the 
observations were performed and the data reduced. On the assumption that ALMA will have 
adequate computing resources for the task, it will be possible for the archive researcher to request 
reprocessing of the archived uv-data with improved calibration data and tailored algorithms. 
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12.5 Control Software 

12.5.1 Overview 

B. Glendenning (NRAO) 
Last Updated: 2001-01-22 
 

This section summarizes the design for the ALMA Array control software. At present, it is very 
closely modeled on the test interferometer design. As we gain experience with the test 
interferometer, the designs will separate (for example, the sub-array facilities for the ALMA array 
will be very much more elaborate). 

In general, we would describe this design as conventional in the sense that designs like it have 
been implemented for many recent telescope control systems. There are no drivers that we know 
of that would require us to come up with a radically new design.  

Fundamentally, the role of the control software is to take high-level observing commands from 
the scheduling system and to turn these high-level commands into detailed control of the array, 
finally producing science data products and monitor data archives. In brief, the scope of the 
control software is “scheduler to data.” 

Almost all devices will be attached to a CAN bus operating in a master/slave (polled) fashion. 
The bus will operate at 1Mbps and is capable of at least 2000 polled operations per second (up to 
8 bytes of data per transaction). Devices on the CAN bus will be responsible for implementing a 
simple in-house protocol to map CAN message IDs to internal device addresses. A few devices 
will have other connections, in particular Ethernet. 

The CAN buses are attached to (mastered by) a Power PC (PPC) VME based computer running 
the VxWorks real-time operating system. There is one ALMA PPC system at each antenna, and 
two at the center. One central system is used to master the central CAN devices. The other system 
is embedded within the correlator. Centrally there is a general-purpose computer running Linux 
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that is the overall master for the system, which is known as the Array Control Computer (ACC). 
There are also some ancillary systems in the center for, e.g., operators to sit at. 

The antenna-based systems are connected to the central systems via point-to-point Gigabit 
Ethernet network connections. Commercial off the shelf (COTS) solutions for Gigabit Ethernet 
are available that support 40km fiber runs and quality of service (QoS) guarantees. The central 
computers are connected with Gigabit or 100Mb (TBD) switched Ethernet on a network 
segregated from the rest of the networks site networks. 

Logically, the software is partitioned so that control flows in a master-slave fashion from a central 
executive who controls high-level (“composite”) software devices that in turn control their 
constituent parts. The lowest level software devices are referred to as device controllers, and 
represent a proxy for the actual hardware – that is, they communicate with the hardware. Data – 
monitor and backend – is collected from the devices by a collecting process in the real-time 
computer attached to the hardware, and buffered up for distribution via a publish/subscribe 
mechanism to consumers of the data, which include the processes that format and archive the 
data. The software is distributed amongst computers so that only the device controllers and 
software directly concerned with low-level device activities are on the local real-time computer. 
All higher-level software entities are concentrated on the ACC. 

Engineering access to devices that are installed on the test interferometer will be implemented via 
access to the device controller interface or to the I/O routines directly from engineering 
workstations. 

The ALMA Time System will establish synchronized switching cycles and mode changes, and 
provide time-stamping for the resulting measurements.  This must be done across the entire 
instrument including the central building and the geographically dispersed antennas.  
Additionally, the Time System must be accurately related to external measures of time to 
correctly determine the position of astronomical objects of interest. The fundamental time system 
of the interferometer is TAI time maintained in a central master clock. Although TAI is the 
internal system used by the software, other time systems such as UTC and local sidereal will be 
accepted from user input routines. Most devices do not have precise timing requirements. For 
those that do, the control software must arrange to have monitor and control commands sent to 
the device in precisely defined windows within the pervasive 48ms timing period. This is 
accomplished by sending time-tagged commands from the center sufficiently in advance of when 
they are required to account for the non-determinism in the network and general-purpose ACC. 
The commands are then staged in the ABM until they are required at the hardware. The slave 
clocks are given the array time of a particular timing event, and they maintain time thereafter by 
counting timing events. 

There are several characteristic (“looping”) timescales of interest to the control software: 

• 2ms: This is the shortest timescale at which any device will require interaction (the total 
power detectors). Timescales faster than this are always handled by hardware. 

• 48ms: This is the period of the pervasive timing event sent to all hardware with precise 
timing requirements.  

• 16ms: Fastest correlator dump time. (Autocorrelations achieve 1ms dump times but are 
“bundled” in 16ms increments). 

• 1s: This is the fastest timescale for observational changes, e.g., source change or change 
in correlator setup. 

• >1s: Most devices will be monitored or controlled at rates slower than 1Hz, often much 
slower (300s). 
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Some model values are required for some devices – for example, the correlator will need a delay 
model. These calculations will be encapsulated in “model servers” running centrally. The central 
control software will call these servers and send a parameterized result (e.g., polynomial as a 
function of time) to the device that needs them. 

12.5.2 Device (M&C) Interface 
M. Brooks (NRAO) 
Last Changed: 2001-01-22 

12.5.2.1 CAN Interface 
The CAN bus has been selected as the primary interface to distributed hardware devices within 
the ALMA project. CAN is an ISO standard multi-drop communications medium used 
extensively in automotive and industrial applications. A higher layer master/slave protocol has 
been defined (ALMA Computing Memo #7) which governs the behavior of  slave nodes at the 
devices. This bus is hereafter referred to as the ALMA Monitor and Control Bus (AMB). 

12.5.2.1.1 Bus Master Nodes 
It is required that on any single AMB there be only a single bus master node. Bus master nodes 
have been coded and tested for the following hardware and software combinations: 

• O/S: VxWorks. SBC: MVME2700, MVME1603, MVME2604. CAN Interface: Tews 
Datentechnik TP816 Dual and Single Port PMC CAN modules (available in the US 
from SBS Greenspring) 

• O/S: Windows NT. Any PC platform with PCI. CAN Interface: National Instruments 
Dual Port PCI CAN board. 

The following hardware and software combinations are planned for support: 
• O/S: Linux. Any PC platform with PCI. CAN interface: Janz CAN-PCI/K2O 

It is the responsibility of the ALMA Computing Group to design, implement and test all 
code developed for these bus master platforms. 

12.5.2.1.1.1 Bus Slave Nodes 
There will be two standard interfaces (SI) to the AMB, the AMBSI1 and the AMBSI2. All 
designers of hardware interfacing to the AMB should use one of these two; new slave node 
implementations may be considered where sufficient justification can be provided. All slave node 
implementations must comply with the bus specification detailed in ALMA Computing Memo 
#7, which requires that no slave node initiate transactions on the bus unless polled by a bus 
master. 

12.5.2.1.1.2 AMBSI1 
The purpose of the AMBSI1 is to provide a highly flexible interface board with on-board CAN 
and device-side I/O consisting of parallel, serial and bit-wise ports. The board would be delivered 
to hardware designers with a standard firmware package supporting basic CAN access to the I/O 
ports and external bus. The micro-controller on the AMBSI1 will have sufficient spare processing 
capacity to run additional user-specific code, such as providing local displays. The ALMA 
Computing Group would be responsible for developing such code in conjunction with the 
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hardware developer and for integration testing the product to ensure that the user code does not 
interfere with the CAN slave code. All AMBSI1 boards should be similar in hardware, and 
identical in size and connector arrangement. Code may be loaded into on-board flash memory by 
means of the CAN bus or the local RS232 port. 

The CAN bus servicing code is written to be entirely interrupt-driven.  It runs only in response to 
interrupts from the CAN controller, and those interrupts are set to the highest possible priority (in 
the Infineon C167, this is interrupt level 15, group level 3).  When not servicing an interrupt, the 
processor executes an idle loop.  User-written code may include a function to execute from the 
main idle loop, or it may simply consist of the callbacks for CAN message reception interrupts.  

12.5.2.1.1.3 AMBSI2 
This device would perform the function of a CAN bus to Serial Peripheral Interface (SPI) 
converter. The AMBSI2 is designed for use in systems which either have their own 
microprocessors or need a very minimum amount of I/O to the CAN bus. It is currently proposed 
that the resulting subsystem would require +5 Volts at 200mA max and occupy a small daughter 
PCB of approximately 1.4 by 1.8 in. The PCB would be either mounted to the main PB Board by 
several SIP headers that also serve as the I/O connectors for the subsystem. 

The board would have a unique serial number (programmed into the microprocessor or using the 
same Dallas part as the AMBSI1, TBD). There would be about 16 bytes of RAM which could be 
accessed by either the CAN bus or the SPI port. An ATN output would indicate when RAM 
contents had been altered by the CAN bus. The unit will have its own oscillator and reset 
circuitry, completely independent of the host microprocessor. All of the software in the 
subsystem would be developed by and be the responsibility of the software group. 

In addition to providing the CAN interface, the unit would also provide the interface for both the 
RESET and TIMING pulses which come in through the AMB DB-9 connector or module wiring 
as RS-485 and be available as TTL signals to the application circuitry. 

12.5.3 Correlator 
J. Pisano (NRAO) 
Last Revised: 2000-11-22 

12.5.3.1 Summary 
This section describes the ALMA correlator control computer hardware and software. This 
computer system is meant to control the baseline ALMA correlator and process its lags. The real-
time computer system consists of two parts. The control computer, a VME PowerPC computer 
running VxWorks, configures and monitors the ALMA correlator via a CAN interface. The data 
processing computer, a Beowulf cluster of COTS PCs running Linux with customized device 
drivers, interfaces to the ALMA correlator LTAs via a FPDP interface and converts raw lag 
results to spectra. 
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12.5.3.2 Correlator Computer Hardware Overview 
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Figure 5 

Figure 5 shows a block diagram of the correlator computer relative to other systems to which it 
interfaces. The Array Control Computer (ACC) acts as a master to the correlator control 
computer issuing commands to the latter.  The Data Collector Computer accepts well-defined 
spectral data sets, applies further processing (flagging bad data, etc.), writes these processed 
results to a distribution format and forwards them to an archive. 

The Correlator Control Computer (CCC) is a Motorola MV-2700 PowerPC computer which runs 
the VxWorks real-time operating system. Its primary function is to translate commands from the 
ACC via an Ethernet connection into a format understood by the ALMA correlator using the 
CAN protocol. The CCC serves as a CAN master to the slave nodes in the correlator hardware. 
The kinds of commands that the ACC issues include correlator configuration commands, monitor 
requests and correlator integration control, i.e., starting and stopping of integrations. 

The Correlator Data Processor computer (CDP) accepts raw lags from the ALMA correlator 
hardware via a 32-bit parallel bus (Front Panel Data Port - FPDP) from the LTAs, converts them 
to spectral results and transports them to the Data Collector computer via a high-speed link. The 
CDP must accept lags and perform FFTs at extremely high rates. It has been estimated that the 
data transfer rates can range from 0.5 MB/second to over 3GB/s and that processing rates can 
range from 25 MFLOPS (million floating point instructions per second) to 25 GFLOPS. 

Currently a straw man design of a Beowulf (see http://www.beowulf.org/ for more information) 
cluster includes the following items: 

• Rack-mounted computer(s) to support 32 FPDPs interface directly to each compute node. 

• 16 - 32 Dual processor Pentium III (or equivalent) nodes 

• Gigabit Fiber and router(s), e.g., MyraNet, Giganet, InfiniBand to interconnect each node (the 
Beowulf network) in a multi-drop configuration. A possible option for this is the “Flat 
Neighborhood Network” topology – see http://aggregate.org/FNN/ for more information. 
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• High-speed network interface to the Data Collector computer in order to support the burst 
data rates from the correlator to the Data Collector computer of 60 MB/sec.  

• One or more dedicated Beowulf nodes that act as bridges between the Beowulf network and 
the network. 

There exists a link between the CCC and the CDP computer systems that will most likely be 
Ethernet. This provides a communication link between the ACC and the CDP allowing the CCC 
to send configuration or timing information to the CDP. 

12.5.3.3 Correlator Computer Software 
The CCC software will be written in C++ as a multi-tasking application utilizing the VxWorks 
RTOS as there are many time-critical functions in controlling the ALMA correlator.   

The CCC software will have the following properties: 

• It will utilize the ALMA Common Software (ACS) libraries for basic software services that 
include peer-to-peer communications, logging of errors and messages, time services, events 
and alarm systems all of which incorporate the CORBA architecture.  

• It will be aware of the 48 ms array time Timing Events in order to synchronize its operation 
with other hardware and software components in the array. 

• It will be capable of controlling the ALMA correlator on 16-ms time boundaries that are the 
basic time ticks of the correlator hardware. 

• It will be able to support the ALMA correlator’s specification to handle up to 16 sub-arrays 
each having a specific set of antennas, bandwidths, correlation modes and dump times – see 
ALMA Memo 294, The ALMA Correlator Long Term Accumulator for details. 

• It will be multi-threaded allowing high priority, time critical operations to proceed with out 
interruption from lower priority, non-critical operations to proceed without interruption. 

• It will utilize the CAN protocol to communicate commands to and to retrieve monitor data 
from the ALMA correlator. 

• It will follow the general characteristics of a “Device Controller” which is a standard ALMA 
control computing architecture defining how computer-controlled devices operate. 

12.5.3.4 Data Processor Computer Software 
The CDP software will be written in C++ for Linux. The software architecture will take 
advantage of the parallelization of the hardware. Each “data spigot” of the LTA will be connected 
to a Beowulf compute node to handle set of lags for a given baseline.  FFTs will then be run on 
these lags and sent to the Data Collector computer. 

The CDP software will have the following properties: 

• It will be able to support all of the correlator modes available to the one quadrant of the 
ALMA baseline correlator. 

• It will be capable of supporting the minimum correlator dump times of 16 ms for cross 
correlations, 16 1-ms auto correlations every 16 ms. 

• It will be capable of delivering an output data rate of 6MB/s with a burst rate of 60 MB/sec. 
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• It will use the FFTW library from MIT (see http://www.fftw.org for details) to compute the 
FFTs. This is an extremely fast FFT engine especially if there are many FFT computations 
done on similar data sets. Also there is a version of FFTW which can be run on a parallel 
computer architecture using MPI, although at this time we do not think that this feature will 
be necessary. 

• It will allow the optional processing capabilities of: 

• Van Vleck correction 
• Hanning Windowing 
• Spectral Decimation 
• Spectral Averaging 
• Apply coarse and fine geometric delays for cross-correlations 
• Sum all channels together to provide a single value. 
 

• It will utilize the standard Message Passing Interface (MPI) – see http://www.mpi-forum.org/ 
for more information – utilized by many Beowulf systems. It is envisioned that there will be 
little peer-to-peer communication as each compute node will have all of the lags for a given 
baseline and will not need to transmit lags between compute nodes. It is likely that the master 
node will need to communicate information to the compute nodes including configuration 
and status information and possibly timing information. 

• It will have a set of software components that extract lags from the ALMA correlator via the 
FPDPs and distribute the lags to the appropriate compute nodes. As these data rates are 
extremely high, this will most likely be a real-time embedded computer with access to the 
Beowulf network. 

12.6 Telescope Calibration 
R. Lucas (IRAM) 
Last Changed: 2000-09-28 
This section outlines the software needs of the operations to be performed in order to determine 
the calibration parameters that will be needed to successfully execute and reduce standard 
astronomical observations. These operations will be under the responsibility of the operators and 
staff astronomers. They may require all the antennas, but in many cases, only a sub array of 
antennas will be used. Most will actually be performed by observing standard astronomical 
sources, so many/most of the general science requirements apply; in particular the data will be 
processed through the pipeline, and the results fed back to the observing processes; the raw data 
will be archived as science data.  These calibration operations will be implemented in the same 
way as the standard observing modes. A complete list of those operations cannot be made at this 
time, since the general calibration plan will be subject to evolution during the next years and even 
the full life of the array. 

Among those operations we may cite: 

• Pointing calibration sessions: 
A set of pointing calibrations are performed on several pointing calibrators all across the 
sky. This needs to be done after some antennas have been moved, but also for periodical, 
systematic checks.  Occasionally one should measure the relative pointing of the different 
frequency receivers. Pipeline data reduction will be the same as for the standard pointing 
measurements during project observations; then a least square determination of the 
pointing model parameters is performed for each antenna involved. 
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• Baseline calibration sessions: 
A set of cross-correlation scans on several calibrators all across the sky are performed, 
for instance some antennas have been moved (but some antennas which have not been 
moved have to be included in the sub-array). The data reduction is performed by a least 
square fit of baseline offsets to the observed phases. 

• Delays calibrations: 
They are needed for most interferometric observations.  One observes a strong point 
source calibrator), in the observable sky, for a very short time to measure the relative 
delays to the antennas by fitting a straight line to the frequency dependence of the 
observed phases. 

• Beam shape calibration 
This involves holography measurements on cosmic sources, to monitor the beam shape 
and the focusing of the antennas, for instance as a function of elevation. 

A later revision to this section may also include the processing of array-wide atmospheric 
transparency monitoring (FTS?). 

12.7 Post-Processing Software 
B. Glendenning (NRAO) 
Last Changed: 2000-09-28 

The AIPS++ package (http://www.aips2.nrao.edu) will be developed as required to cope with 
general ALMA data processing needs. The ALMA data products will be written in a FITS-based 
format so that other packages may be used for special-processing or user preference. This section 
will be expanded in a later revision. 

12.8 Common Software 
G. Chiozzi (ESO) 
Last Changed: 2000-09-28 

12.8.1 Overview 
The ALMA Common Software (ACS) is located in between the ALMA application software and 
other basic commercial or open source software on top of the operating systems. It provides basic 
software services common to the various applications (like antenna control, correlator software, 
data pipelining). 

ACS is designed to offer a clear path for the implementation of applications, with the goal of 
obtaining implicit conformity to design standards. In a distributed environment like the one of 
ALMA, the application software will then become more uniform and therefore more 
maintainable. 

The main users of ACS will be the developers of ALMA applications. The generic tools and 
GUIs provided by ACS to access logs, Configuration Database, active objects and other 
components of the system will be also used by operators and maintenance staff to perform routine 
maintenance operations. 

It is intended to develop ACS incrementally via periodic releases. Automatic regression tests are 
planned in order to achieve that ACS becomes a reliable and robust platform. 
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12.8.2 Technologies 
The choice of the technologies used in the ALMA Common Software, and as a consequence on 
the whole ALMA Software is based on the following initial and explicit decisions: 

• Select state of the art but consolidated and widely accepted technologies. 

• Adopt an Object Oriented architecture 

•  Share software rather than re-invent it 

The ALMA Common Software is designed based on the experience of the ALMA partners in 
their previous projects, but is implemented using the technologies and architectural concepts that 
have found wider industrial acceptance in the last few years.  

At the very core is the decision to use CORBA[0][0]. The reasons for using CORBA are in short: 
Object Orientation, support for distributed systems, platform independence, it is a communication 
standard, it provides a variety of services. 

The ALMA software will have to be as much as possible independent from the operating system 
and will actually run on multiple platforms (Linux and other flavors of UNIX and VxWorks). We 
have therefore decided to select the Adaptive Communication Environment (ACE)[0] as the basic 
multi-platform software. This package provides portable operating system interface services and 
implements a wide set of classes specifically designed for the implementation of distributed real-
time systems. 

ACE is also the core of The ACE ORB (TAO)[0], a high performance real-time CORBA 
implementation. 

The Object Model for ACS is based on the concept of Distributed Object[0], that identifies three 
entities: 

1. Distributed Object - Instances of classes identified at design level in the ALMA system, are 
implemented as Distributed Objects. In particular, at control system level, Distributed Object 
is the base class used for the representation of any physical (a temperature sensor, a motor) or 
logical device in the control system. 

2. Property - Each Distributed Object is characterized by dynamic values, called Properties, 
that are monitored and controlled (status, position, velocity, electric current).  

3. Characteristic - Static data associated with a Distributed Object or with a Property, 
including meta-data such as description, type and dimensions, and other data such as units, 
range or resolution are called Characteristics.  

The choice of CORBA for the implementation of Distributed Objects and of all services that are 
part of ACS makes it possible to have every software operation available in a transparent way 
both locally and at the Control center in San Pedro. This applies also to all data, logs and alarms. 

12.8.3 Services 
The following UML Package Diagram shows the main services provided by ACS, represented by 
the packages that implement them. 
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Packages have been grouped in layers in order to limit as much as possible the relations between 
the layers (not shown in the diagram): package are allowed to use services provided by other 
packages on the lower layers and on the same layer, but not on higher layers. 

At the very bottom: 

• Distributed Object: This package provides the IDL interfaces for the Distributed Object 
class, for the Property classes to access values of all basic data types (like integer and floating 
point numbers) and for Characteristics. It provides also the basic server-side CORBA 
implementation for these same classes. Server-side applications can use directly these classes 
or implement sub-classes for specific I/O devices. Client-side applications use the IDL 
interfaces to access all Distributed Objects, not being concerned by the specific 
implementation details of the server.  

• Data Channel: implementation of a data pipe to transfer efficiently continuous flows of data. 
It is used by many of the higher level services. 

The second layer provides essential services that are necessary for the development of any 
application: 

• Event System: implementation of data retrieval by event, monitors and periodic timers.  

• Logging System: API for logging of data, actions and events. Transport of logs from the 
producer to the central archive. Tools for browsing logs.  
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• Value retrieval System: Value retrieval and archiving of system and engineering values on a 
fixed periodic basis or on the occurrence of specific changes in the value. 

• Error System: API for handling and logging run-time errors, tools for defining error 
conditions, tools for browsing and analyzing run-time errors.  

• Command System: Tools for the definition of commands, API for run-time command syntax 
checking, API and tools for dynamic command invocation.  

• Time System: Time and synchronization services.  

The third layer provides services that are not strictly necessary for the development of prototypes 
and test applications or that are meant to allow optimization of the performances of the system: 

• Alarm System: API and tools for configuration of hierarchical alarm conditions based on 
Fault Tree analysis, API for requesting notification of alarms at the application level, tools for 
displaying and handling the list of active alarms.  

• Sampling: low-level engine and high-level tools for fast data sampling (virtual oscilloscope).  

• Indirect value retrieval: low-level engine and configuration tools for data mirroring and 
caching. 

The fourth and last layer provides high level APIs and tools. More will be added in the future. 
The main goals for these packages is to offer a clear path for the implementation of applications, 
with the goal of obtaining implicit conformity to design standards and maintainable software. 

12.8.4 References 
CORBA - Object Management Group home page (http://www.omg.org/) 

Advanced CORBA Programming with C++, M.Henning S.Vinoski, Addison-
Wesley, 1999 

ACE, Adaptive Communication Environment 
(http://www.cs.wustl.edu/~schmidt/ACE.html) 

TAO, the ACE ORB (http://www.cs.wustl.edu/~schmidt/TAO.html) 

Implementing Distributed Controlled Objects with CORBA -  
M.Plesko, PCs and Particle Accelerator Control Workshop, DESY, Hamburg, 1996  
(See http://kgb.ijs.si/KGB/articles.htm for this and other related papers). 

12.9 Software Practices 
B. Glendenning (NRAO) 
Last Changed: 2000-09-28 
ALMA has adopted a software process based on the Rational Unified Process (RUP). It is using 
the Unified Modeling Language (UML) as the software design language. It will use the CORBA 
Interface Definition Language (IDL) as the basis for software/software Interface Control 
Documents. It uses both configuration control and version control. These items and others will be 
spelled out in greater detail in a later release of this document. 

 


