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ABSTRACT. Orthogonal sequences known as m-sequences can be used in place of Walsh functions in
phase switching and sideband separation in cross-correlation interferometers. Functions based on three-
character m-sequences may be advantageous because they may provide a larger set of mutually orthogonal
modulation and demodulation functions, and hence support a larger number of antennas for a given
sequence length, than allowed by other orthogonal sequences such as Walsh functions. The reason for this
advantage is that if the demodulation functions are formed from the di†erences of the three-character
m-sequence modulation functions, then because the m-sequences obey an addition rule whereby sums or
di†erences of m-sequences are also m-sequences, the demodulation functions are also members of the
original orthogonal set. In a complete set of sequences, all the di†erences are of course duplicates of the
original sequences. However, certain subsets of sequences have di†erences which are not members of
the subset, and these subsets can be used to form modulation and demodulation functions which have both
the desired uniqueness and orthogonality properties. While it is not obvious how to select the subsets,
heuristic methods seem reasonably successful.

1. INTRODUCTION

Phase switching in radio interferometry refers to the tech-
nique of periodically reversing the phase of the signal from
one antenna of a pair and simultaneously reversing the sign
of the correlation of the signals from the pair. Originally
introduced by Ryle (1952) as a means of multiplying the
voltages from the two antennas, the technique is still used in
modern interferometers to reduce noise and DC drifts. Side-
band separation refers to the technique of periodically
introducing a 90¡ phase shift into the Ðrst local oscillator
(LO) at the receivers to form both in-phase and quadrature
signals. These signals may be later combined to separate the
signals from the upper and lower sidebands of the Ðrst
downconversion.

While it is easy to see how to phase switch a two-element
interferometer, hold one phase constant and switch the
other, the switching functions become more interesting
when more than two antennas are involved. For example, it
is not sufficient to switch a third antenna with either func-
tion used for the Ðrst two (constant or periodic) if we want
to phase switch all three possible correlations. The require-
ment of sideband separation adds further complexity.
Modern interferometers have employed Walsh functions as
modulation functions for both phase switching and side-
band separation (Wright et al. 1973 ; Granlund, Thompson,
& Clark 1978). The Walsh functions are orthogonal binary

functions, analogous to the better known sine and cosine
orthogonal functions (Harmuth 1970).

An additional complication arises in making a set of
demodulation functions which are unique, orthogonal to
each other, and orthogonal to each of the modulation func-
tions as well. This orthogonality reduces the possibility of
spurious pickup or cross talk of the switching signals. In
general, the demodulation functions are linear com-
binations of the modulation functions and are neither
orthogonal nor unique. However, in a sufficiently large set
of modulation functions, one can usually select a smaller
subset whose demodulation functions have these properties
(Urry, Thornton, & Hudson 1985 ; Welch et al. 1996 ; Urry
1999). But if many antennas are to be supported, the length
of the functions and hence the length of the switching cycle
can become long. One would like a short switching cycle
because this is the shortest timescale on which the phase of
each antenna may be corrected. For example, it is possible
to imagine that a water vapor radiometer operating in real
time at each antenna could be used to correct phase errors
due to the atmosphere on a timescale of a fraction of a
second. Thus it is an interesting question as to how to
provide the largest set of mutually orthogonal modulation
and demodulation functions with the shortest length.

Orthogonal functions known as m-sequences suggest
themselves for this problem because they obey an addition
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rule whereby the sum or di†erence of a pair of m-sequences
is also an m-sequence and hence a member of the original
orthogonal set. Because it is possible to make the demodu-
lation functions from simple di†erences of the modulation
functions, the m-sequence demodulation functions are then
also members of the same orthogonal set. The question then
becomes one of Ðnding the largest subset for a given
sequence length whose di†erences are both unique and not
members of the subset.

In order to take advantage of the addition property of the
m-sequences, it is necessary to use a method which switches
between three phases, rather than between four phases as is
done with Walsh functions. This is because the m-sequences
follow the addition rules for Galois Ðelds, and these rules
are the same as for the addition of phases only for Galois
Ðelds with a prime number of elements. The four-phase
switching is naturally suggested by the method of sideband
separation which employs the in-phase and quadrature
(separated from the in-phase by 90¡) components of the
signal. In this four phase method, one Ðrst subtracts the
correlations which are collected with phases 180¡ apart.
This cancels any drifts in the signal and results in two data
streams with phases separated by 90¡. These two data
streams can then be combined to produce the data from the
upper and lower sidebands separately. However, one may
also perform both the operations of drift cancellation and
sideband separation using a method which switches
between three phases separated by 120¡. In this case the
in-phase and quadrature signals are formed from linear
combinations of the three-phase data analogous to forming
two vectors separated by 90¡ by addition of three vectors
separated by 120¡. The addition should be done so that
equal weight is applied to each data stream and the noise of
the sums are then averaged down as much as possible.

2. PHASE SWITCHING USING
WALSH FUNCTIONS

In order to illustrate the method of phase switching and
sideband separation we describe a simple technique,
employed for example at the Owens Valley Radio Observa-
tory. This technique uses two sets of Walsh functions, the
Ðrst for the 90¡ sideband separation and the second for the
180¡ phase switching. The phase switching cycles are nested
within the sideband separation cycles so that within each of
the time steps during which the Ðrst LO is in either the 0¡ or
90¡ phase of the sideband separation cycle, the Ðrst LO is
switched by 180¡ through a complete cycle of another
Walsh function. For example, if we use Walsh functions
with a length of eight steps, then a complete cycle of both
the 90¡ and 180¡ switching will involve 64 steps.

With this switching arrangement, the data may be pro-
cessed as follows. The correlation of the signals from two

antennas will contain a factor of the cosine of the di†erence
in phases between the LOs of two antennas. For example,
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We Ðrst resolve the 180¡ phase switching cycle which is

the inner nest of the two cycles. The phase di†erence due to
this cycle will be either 0¡ or 180¡, and in computing the
correlation, we sum the signals with a positive or negative
sign according to the sign of the cosine factor. This sequence
of positive and negative ones formed from the di†erence of
the second set of Walsh functions is the Ðrst part of the
demodulation function. With the 180¡ phase switching
resolved we are left with two streams of data representing
the two states arising from the 90¡ switching of the Ðrst set
of Walsh functions. The di†erence of these Ðrst Walsh func-
tions is the second part of the demodulation function.
Because cos (a [ n/2) \ sin (a) we have two data streams
which represent the in-phase and quadrature components
of the measured signal.

Taking the Fourier transform of both these data streams
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The left-hand sides of equations (4) and (5) are the desired
upper and lower sideband visibility amplitudes and phases
for the correlation of antennas i and j.

Walsh functions can be used in a di†erent method of
sideband separation and phase switching which does not
require nesting. In this method, employed many years ago
at the Green Bank interferometer (B. Clark 1999, private
communication) and currently at the Hat Creek Observa-
tory (Urry et al. 1985 ; Welch et al. 1996 ; Urry 1999), the
in-phase and quadrature signals are generated by switching
the Ðrst LO by 90¡ while the 180¡ signals for phase switch-
ing are generated by the second LO. In this method, the Ðrst
and second LOs are switched simultaneously and two inde-
pendent Walsh functions are required for each receiver to
be correlated. In this method, the demodulation functions
are also linear combinations of Walsh functions, and certain
subsets of Walsh functions are used to form unique and
orthogonal demodulation functions.

3. SWITCHING WITH SHIFTED m-SEQUENCES

The m-sequences, short for ““ maximal-length shift register
sequences,ÏÏ are sequences of some number of characters
which have properties analogous to those of the better
known two-character pseudorandom binary sequences
(Zierler 1959). In particular, the complex autocorrelation
function of both pseudorandom binary sequences and the
multicharacter m-sequences is equal to unity at zero lag and
equal to the inverse of the length of the sequence at all other
lags. This property implies that a set of m-sequences which
are derived by cyclically shifting a single m-sequence are
nearly orthogonal to each other. It is a simple matter to
make a set of functions based on m-sequences which are
orthogonal and suitable for sideband separation and phase
switching in radio interferometry.

An m-sequence is obtained from a recurrence relation,
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is a primitive polynomial, and h and a are elements ofh D 0,
a Galois Ðeld of q elements denoted GF(q). The recurrence
relation will generate an inÐnite sequence of period qm [ 1
of which any segment of length qm [ 1 is an m-sequence.
For example, take the case of the Galois Ðeld of four ele-
ments, GF(4) with the primitive polynomial
h(x)\ x2] x ] u of degree m\ 2. The four elements 0, 1,
u, u2 satisfy u2] u] 1 \ 0 and u3\ 1 so u is a cube
root of unity (Balza, Fromageot, & Maniere 1967). We

obtain the m-sequence

0 1 1 u2 1 0 u u 1 u 0 u2 u2 u u2 . (8)

As another example, for the Galois Ðeld of three elements,
we have the following sequences of lengths 3m [ 1, with
m\ 2 and 3 (Godfrey 1966),

0 1 2 2 0 2 1 1 , (9)

00101211201110020212210222 . (10)

As with the binary pseudorandom sequences, the autocor-
relation function of the m-sequences is the autocorrelation
of the complex sequence obtained by replacing each of the
elements in an m-sequence by where r iss
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The following combination of properties relevant to our
application is equivalent to the autocorrelation property :

i) In an m-sequence of length qm [ 1, each nonzero
element occurs qm~1 times and the element 0 occurs
qm~1[ 1 times.

ii) In the terms of the autocorrelation function, the lags
or shifts which are not multiples of (qm~1[ 1)/(q [ 1)
contain each pair of elements qm~2 times except the pair
M0, 0N, which occurs qm~2[ 1 times.

iii) For shifts of k(qm~1[ 1)/(q [ 1) there are qm~1 pairs
of the nonzero elements Ma, bjaN, where b is a primitive of
the Galois Ðeld, while the pair M0, 0N occurs qm~1[ 1. In the
case of GF(4) the last part of this statement means that for
the sequence of length 15, the pairs M1, uN, M1, u2N, Mu, u2N
each occur four times while the pair M0, 0N occurs three
times.

These properties suggest that the set of qm [ 1 cyclic shifts
of an m-sequence together with the sequence of zeroes, 0,
may be used as the switching functions in interferometry if
we add to each sequence an additional zero in the same
place, for example at the beginning, of each of the already
shifted sequences. This additional zero makes each
sequence qm states long, and with the sequence of all zeroes,
there are qm di†erent sequences.

There are a number of ways to use the m-sequences. The
binary m-sequences, that is, the pseudo-random sequences
consisting of zeroes and ones, may simply be substituted for
the Walsh functions. Alternatively, the four-character
sequence over GF(4) may be used to set the four phases at
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the Ðrst LO, and the data processed as with the method of
nested Walsh functions. With the four-character
m-sequence, because of property (iii), we can use only shifts
up to k(qm~1[ 1)/(q [ 1), or alternatively one can use all qm
of the sequences if we double the sequence length by appen-
ding to each sequence a copy of the sequence, but with the
1Ïs and uÏs swapped. Applying the m-sequences in these two
methods does not seem to improve on the methods using
Walsh functions. The reason in the case of the four-
character m-sequence is that the demodulation functions
which are di†erences of the m-sequence modulation func-
tions are computed as di†erences modulo 4 and not accord-
ing the addition rules of the Galois Ðeld GF(4). Thus the
resulting demodulation functions are not m-sequences and
not members of the original orthogonal set.

However, in the case of the three-character m-sequences
the addition rules for GF(3) are simply modulo 3. Therefore
the demodulation functions formed as di†erences are also
m-sequences and orthogonal to the modulation functions
as well as the other demodulation functions. Finding a suit-
able set of modulation functions amounts to Ðnding a
subset of sequences whose di†erences contain no duplicates.

Tables 1 and 2 list examples of suitable subsets found by
heuristic search methods. In the tables, the sequence labeled
““ 0 ÏÏ means the original sequence, and the sequence labeled
““ 1 ÏÏ means the original sequence shifted to the right by one
character. The sequence labeled qm is the sequence of zeroes.
The number at the intersection is the sequence number of
the di†erence of the sequences indicated at the start of the
row and column. Because the di†erence of sequences a [ b
is not the same sequence as the di†erence of b [ a, the

TABLE 1

A SUBSET OF 10 SEQUENCES OF LENGTH 81

80 42 77 72 64 54 49 69 60 11

11 51 39 5 46 12 50 73 27 48
60 20 75 4 23 21 65 55 56
69 29 70 43 41 10 52 59
49 9 25 36 74 7 35
54 14 45 79 47 34
64 24 0 68 38
72 32 22 58
77 37 31
42 2
80

di†erences must be taken as given by the (row[column).
The case of the sequences of length 243 is particularly inter-
esting because the selected subset and its di†erences make
up 231 out of the total of 243 orthogonal functions. Re-
phrased for interferometry, this subset can provide unique
orthogonal functions for the 210 baselines demodulation
functions as well as the 21 antenna modulation functions.

If it is not required to make the demodulation functions
unique from the modulation functions, but only unique and
orthogonal to the other demodulation functions, one can in
general do a little better. For example, Table 3 lists such a
subset of 11 sequences of length 81.

Although phase switching between four phases is natu-
rally suggested in order to cancel drifts and separate the
sidebands, it is also possible to perform these functions with
data obtained by switching between three phases separated
by 120¡ as would be required by the three-character

TABLE 2

A SUBSET OF 21 SEQUENCES OF LENGTH 243

242 24 202 199 146 107 166 44 208 116 58 115 112 217 175 75 149 168 190 89 74

74 195 180 65 142 193 238 150 133 181 34 103 49 230 104 201 79 223 95 191 39
89 210 186 59 72 21 29 117 60 12 224 155 109 170 80 225 102 200 70 216

190 69 33 66 235 23 240 4 110 130 41 173 143 51 83 19 207 3 136
168 47 187 154 144 114 125 119 9 231 52 162 172 22 140 204 124 86
149 28 213 85 184 40 188 8 158 20 159 171 222 17 148 169 0
75 196 206 92 161 63 129 67 141 37 50 38 138 101 48 27

175 54 167 68 134 139 227 90 11 97 108 1 105 73 135
217 96 189 46 18 13 211 106 218 132 122 229 194 226
112 233 94 16 212 98 55 174 164 32 232 241 127
115 236 137 215 219 91 53 176 153 43 120 111
58 179 131 100 205 7 30 152 71 163 156

116 237 221 10 128 84 31 151 42 192
208 87 64 61 123 57 113 5 26
44 165 182 185 178 2 126 234

166 45 118 36 88 62 99
107 228 157 239 183 209
146 25 93 177 82
199 78 56 214
202 81 76
24 145

242
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TABLE 3

A SUBSET OF 11 SEQUENCES OF LENGTH 81

72 22 8 4 64 23 66 24 60 49 50

50 48 49 32 76 18 51 3 29 30 53
49 74 50 61 78 7 28 73 71 15
60 23 44 47 62 21 19 31 33
24 43 79 1 14 24 27 8
66 37 35 64 59 41 22
23 60 26 6 58 36
64 38 46 66 34
4 75 77 45
8 65 56

22 52
72

m-sequences. In this three-phase method, the phase di†er-
ences of the LO signals at the two antennas are either 0¡ or
^120¡. One can visualize the three data streams with these
phase di†erences as analogous for example to the three unit
vectors from the origin 1), [ 1/2),e1\ (0, e2\ (J3/2,

[ 1/2). This analogy can be seen by writinge3\ ([J3/2,
the equation for the correlation of two signals following
multiplication by the LO signals in the following form,
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Here the di†erences of the LO phases appear as coefficients
on the sine and cosine terms of the upper and lower side-
band data, and the three data streams with di†erent phase
di†erences can be added or subtracted in the same way as
vectors with those coefficients. In particular since the
vectors and make up a frame or set of non-e1, e2, e3

orthogonal basis vectors for the two-dimensional plane,
these vectors can be combined to form two vectors 90¡
apart. Similarly, the data streams analogous to these
vectors can also be combined to form the required in-phase
and quadrature components. But Ðrst, in order to cancel
drifts or constant o†sets, we can subtract each of the three
pairs of correlation data. In terms of the three basis vectors,
we form the di†erences and Thesee1[ e2, e2[ e3, e3[ e1.
di†erences are three other vectors of equal length also
separated by 120¡ which may also serve as basis vectors, but
in the data, constant o†sets have been subtracted out. There
are many ways to combine these di†erence vectors to form
the 90¡ vectors, but in order to maximize the signal-to-noise
ratio of the data, the linear combinations of the data
streams for each of the two sidebands should be formed so
that at the end of all the arithmetic, the three original data
streams are combined with equal weights applied to each
stream. This follows from the general principle that to best
average a set of n measurements, one should, in the absence
of any other information, add the measurements together
and divide by n. For example using the vectors ande1, e2,

one can form two vectors separated by 90¡,e3
¿1\ J2/2 , J2/2

\ (J2/4)e1
] 1/2(J2/J3 [ J2/2)e2
[ 1/2(J2/J3 ] J2/2)e3 , (13)

¿2\ [J2/2 , J2/2

\ (J2/4)e1
[ 1/2(J2/J3 ] J2/2)e2
] 1/2(J2/J3 [ J2/2)e3 , (14)

whose sum contains the three vectors and in equale1, e2, e3
weight. Analogously by equations (4) and (5), the upper and
lower sideband data can be found from the sum and di†er-
ences of the Fourier transforms of linear combinations of
the di†erenced data streams.
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