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ABSTRACT

Mathematical sequences known as m-sequences can replace Walsh functions

in a novel method of phase switching and sideband separation in radio

interferometry. The use of shifted m-sequences of four characters allows both

the 90� phase changes for sideband separation and the 180� phase changes for

phase switching to take place at the �rst local oscillator and in a shorter switch

cycle than by using Walsh functions. The switching sequences based on the

shifted m-sequences are orthogonal and provide good cross-talk rejection.

Subject headings: instrumentation
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1. Introduction

Phase switching in radio interferometry refers to the technique of periodically reversing

the phase of the signal from one antenna and simultaneously reversing the sign of the

correlation of the signals from two antennas. Originally introduced by Ryle (1952) as

a means of multiplying the voltages from the two antennas, the technique is still used

in modern interferometers to reduce noise and DC drifts. Sideband separation refers to

the technique of periodically introducing a 90� phase shift into the �rst local oscillator

(LO) at the receivers to form both in-phase and quadrature signals. These signals may

be later combined to separate the signals from the upper and lower sidebands of the �rst

down-conversion.

While it is easy to see how to phase switch a two-element interferometer, hold one

phase constant and switch the other, the switching patterns become more interesting when

more than two antennas are involved. For example, it is not su�cient to switch a third

antenna with either pattern of the �rst two (constant or periodic) if we want to phase

switch all three possible correlations. The requirement of sideband separation adds further

complexity. Modern interferometers have employed Walsh functions as switching patterns

for both phase switching and sideband separation (Wright et al. 1973; Granlund, Thompson,

and Clark 1978). The Walsh functions are orthogonal binary functions, analogous to the

better known sin and cosine orthogonal functions (Harmuth 1970).

In reviewing options for the Submillimeter Array (SMA), we �nd that the existing

switching methods require either a long time for each switch cycle or require the phase

switching to be done at the second LO. The sideband separation is always done at the

�rst LO. We would like a short switching cycle because the switch cycle is the minimum

averaging time for data and therefore the shortest time scale on which the phase of each

antenna may be corrected. For example, it is possible to imagine that a water vapor
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radiometer operating in real time at each antenna could be used to correct phase on a

timescale of a fraction of a second. We would also like to do the phase switching at the �rst

LO because noise and DC drifts will be reduced by the phase switching only if they arise in

the system after the phase switch. Thus it is advantageous to have the phase switch as far

upstream in the electronics as possible. At the SMA, the �rst LO is in the receiver in the

antenna, but the second LO is in the control building which is over 0.5 km away from the

furthest antenna.

Switching the �rst LO following an m-sequence of four characters, which become

the four phases (0�, 90�, 180�, 270�), allows both the phase switching and the sideband

separation to be accomplished at the �rst LO and in a shorter time scale than by using

nested Walsh functions at the �rst LO. The switch cycle time is comparable to that of

the method which switches both the �rst and second LO's using Walsh functions. The

m-sequences, short for maximal-length shift register sequences, are integer sequences of

three or more characters which have properties analagous to those of the better known

pseudo-random binary sequences (Zierler 1959). In particular, the complex auto-correlation

function of both pseudo-random binary sequences and m-sequences is equal to unity at

zero lag and equal to the inverse of the length of the sequence at all other lags. This

property implies that a set of m-sequences which are derived by cyclically shifting a single

m-sequence are nearly orthogonal to each other. In this paper we show how to make a set of

sequences based on m-sequences which are orthogonal and suitable for sideband separation

and phase switching in radio interferometry.

2. Phase switching using Walsh functions

In order to illustrate the method of phase switching and sideband separation we

describe two techniques currently in use at other radio interferometers both of which use
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Walsh functions.

A simple technique, employed for example at the Owens Valley Radio Observatory,

uses two sets of Walsh functions, the �rst for the 90� sideband separation and the second

for the 180� phase switching. All switching is done at the �rst LO. The phase switching

cycles are nested within the sideband separation cycles so that within each of the time steps

during which the �rst LO is in either the 0� or 90� phase of the sideband separation cycle,

the �rst LO is switched by 180� through a complete cycle of another Walsh function. For

example, if we use Walsh functions with a length of 8 steps, then a complete cycle of both

the 90� and 180� switching will involve 64 steps.

With this switching arrangement, the data may be processed as follows. The correlation

of the signals from two antennas will contain a factor of the cosine of the di�erence in

phases between the LO's of two antennas. For example,

cos[� ij + !IF � + �i � �j] (1)

where � ij is the phase di�erence of the signals into antennas i and j (this is the signal to

be measured), !IF is the IF or intermediate frequency after down-conversion, � is the time

lag of the correlation, and �i and �j are the phases of the LO's of the two antennas.

We �rst resolve the 180� phase switching cycle which is the inner nest of the two cycles.

The phase di�erence due to this cycle will be either 0� or 180�, and in computing the

correlation, we sum the signals with a positive or negative sign according to the sign of the

cosine factor. With the 180� phase switching resolved we are left with two streams of data

representing the two states arising from the 90� switching. Because cos(a+ �=2) = sin(a)

we have two data streams which represent the in-phase and quadrature components of the

measured signal.
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Taking the Fourier transform of both these data streams results in,

FT [Cij(� )] = Uij(�)exp(�i� 
u
ij) + Lij(�)exp(i� 

`
ij) (2)

FT [Sij(� )] = Uij(�)i exp(�i� 
u
ij)� Lij(�)i exp(i� 

`
ij) (3)

where Cij(� ) is the in-phase correlation, Sij(� ) is the quadrature correlation, Uij(�) and

Lij(�) are the products of the amplitudes of the upper and lower sideband signals from

antennas i and j, and the terms � ij are the phase di�erences of the incoming signals

with the superscripts u and ` indicating the sideband. The equation for FT [Sij(� )] can be

recognized through Euler's identity as a �=2 shift of the equation for FT [Cij(� )]. In these

equations, the negative frequencies contain no independent information since the measured

correlations are purely real functions and the Fourier transform of a purely real function

is symmetric. Since we use only the positive frequencies, multiplying FT [Sij(� )] by i is

equivalent to taking the Hilbert transform of Sij(� ) followed by the Fourier transform. The

sidebands may now be separated as,

Uij(�)exp(�i� 
u
ij(�)) =

1

2

�
FT [Cij(� )]� iFT [Sij(� )]

�
(4)

Lij(�)exp(i� 
`
ij(�)) =

1

2

�
FT [Cij(� )] + iFT [Sij(� )]

�
(5)

The left hand sides of these last two equations are the desired upper and lower sideband

visibility amplitudes and phases for the correlation of antennas i and j.

Walsh functions can be used in a di�erent method of sideband separation and phase

switching which does not require nesting. In this method, employed at the Hat Creek

Observatory, the in-phase and quadrature signals are generated by switching the �rst LO by

90� while the 180� signals for phase switching are generated by the second LO. This method

is well described in the previous publications, Urry, Thornton, and Hudson (1985) and

Welch et al. (1996). In this method, the �rst and second LO's are switched simultaneously.

Two independent Walsh functions are required for each receiver to be correlated.
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3. Switching with Shifted m-Sequences

The above two examples show that the binary Walsh functions, although serviceable,

are not entirely suited to the task of switching the �rst LO's through the four required

phases. It is reasonable to ask whether there are mathematical sequences of four characters

which might better serve this role. The 4 character m-sequences referred to in the

introduction can be used to generate such a set of orthogonal sequences.

An m-sequence is obtained from a recurrence relation,

ai+m = �hm�1ai+m�1 � hm�2ai+m�2 � � � � � h1ai+1 � h0ai (6)

where

h(x) = xm + hm�1x
m�1 + � � �+ h1x+ h0 (7)

is a primitive polynomial, h 6= 0, and h and a are elements of a Galois �eld of q elements

denoted GF (q). The recurrence relation will generate an in�nite sequence of period qm � 1

of which any segment of length qm � 1 is an m-sequence. For example, take the case of the

Galois �eld of four elements, GF (4) with the primitive polynomial h(x) = x2 + x + w of

degree m = 2. The four elements 0; 1; !; !2 satisfy !2+!+1 = 0 and !3 = 1 so ! is a cube

root of unity (Balza, Fromageot, and Maniere 1967; Briggs and Godfrey 1963). We obtain

the m-sequence

0 1 1 !2 1 0 ! ! 1 ! 0 !2 !2 ! !2 (8)

For reference, we list an m-sequence of length 63 be generated from the primitive

polynomial x3 + x2 + x+ !.

0 0 1 1 0 !2 1 ! ! ! !2 ! ! 1 0 ! 0 ! 1 !2 1

0 0 ! ! 0 1 ! !2 !2 !2 1 !2 !2 ! 0 !2 0 !2 ! 1 !

0 0 !2 !2 0 ! !2 1 1 1 ! 1 1 !2 0 1 0 1 !2 ! !2 (9)
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As with the binary pseudo-random sequences, the autocorrelation function of the

m-sequences is the autocorrelation of the complex sequence obtained by replacing each of

the elements in an m-sequence by sj = exp[2�ir=q] where r is the number of the element in

GF (q).

c(j) =
1

n

n�1X
i=0

sisi+j (10)

c(0) = 1

c(j) = �
1

qm � 1

The following combination of properties relevant to our application is equivalent to the

autocorrelation property.

i. In an m-sequence of length qm � 1, each non-zero element occurs qm�1 times and the

element 0 occurs qm�1 � 1 times.

ii. In the terms of the autocorrelation function, the lags or shifts which are not multiples

of (qm�1 � 1)=(q � 1) contain each pair of elements qm�2 times except the pair f0; 0g which

occurs qm�2 � 1 times.

iii. For shifts of k(qm�1� 1)=(q� 1) there are qm�1 pairs of the non-zero elements f�; �j�g,

where � is a primitive of the Galois �eld, and while the pair f0; 0g occurs qm�1 � 1. In the

case of GF (4) the last part of this statement means that for the sequence of length 15, the

pairs f1; !g, f1; !2g, f!; !2g each occur 4 times while the pair f0; 0g occurs 3 times.

These properties suggest that the set of 4m � 1 cyclic shifts of an m-sequence together with

the sequence of zeroes, 0, may be used as the switching functions in our application to

interferometry.

To use the shifted m-sequences in interferometry, we switch the �rst LO of each receiver

in the pattern given by the cyclically shifted m-sequences over GF (4). For example, in

the case of m = 2 which generates an m-sequence of length 15, we have 15 cyclic shifts
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which together with the 0-sequence provide switching functions for 16 receivers. We need

to add to each m-sequence one state in which all the receivers have the same phase. For

example we could preface each sequence with one state in which all the receivers have a

phase shift of zero. This makes each sequence 16 states long and each switching function

now has 4 occurrences of each of the 4 states. The addition of this zero improves the

correlation property since as can be seen from equation 10, the missing zero in equation 8

is responsible for the non-zero autocorrelation function at j 6= 0. Remember that in the

case of the improved m-sequences, we cyclically shift the elements of equation 8, but the

balancing zero is always added to the beginning of each shifted sequence of 15 elements.

Since for most combinations of shifted sequences, every pair of elements occurs once,

we will have an equal number of phase di�erences when cross-correlating the antennas.

In the case of pairs of sequences where the shift is a multiple of (qm�1 � 1)=(q � 1) (for

length 15 these are the shifts of 5 and 10), we are missing one of the 4 phase di�erences. To

compensate, we need to double the sequence length and in the second half of the sequence,

reverse the phases of either the 0 � 180� pair or the 90 � 270� pair. Alternatively we could

use a longer m-sequence, say m=3, of length 63. In the case of 16 receivers we can use the

�rst 15 cyclic shifts since the problem of the missing phases does not occur until a shift by

(qm�1 � 1)=(q � 1) = 21 elements.

To perform the sideband separation, we follow the same algorithm we used with the

nested Walsh functions. At the end of each switch cycle we �rst resolve the phase di�erences

of 180� obtaining the two data sets, equations 2 and 3 with a phase di�erence of 90� degrees.

Let us take the case of q = 4, m = 2, write down some cycles and verify the properties.

The di�erence between obtaining and verifying a switching function is similar to the

di�erence between obtaining and verifying a solution to a di�erential equation. The

veri�cation is straightforward. We will use the integers 1; 2; 3; 4 to represent the four phase
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shifts of 0; 90; 180; 270 degrees. Antenna 0 will be assigned the switch function based on the

sequence in equation 8 and antenna 1 will be based on equation 8 shifted by 1. Remember

that we do not shift the whole sequence for antenna 0, but we cyclically shift the �rst half

and second half separately, and we do not shift the zeroes prefacing each half.

Ant 0 : 00113102212033230033130223201121 (11)

Ant 1 : 03011310221203320103313022320112 (12)

The phase di�erences of each state are obtained by integer arithmetic mod 4.

Diff 0� 1 : 01102232031230310330221201321013 (13)

Now let us verify the properties for antenna 5. The di�erence 5 � 0 shows how the

pattern works when the shift is by a multiple of (qm�1 � 1)=(q � 1) = 5

Ant 5 : 00332301131022120011210331302232 (14)

Diff 5� 0 : 00223203323033330022120112101111 (15)

Diff 1� 5 : 03123013130221200132103131022320 (16)

The 16 sequences generated this way are mutually orthogonal in that

cij =
1

n

n�1X
k=0

siks
j
k (17)

cij = 1 i = j
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cij = 0 i 6= j

where sik is the kth element of the ith complex sequence formed as in equation 10, but here

from the switching patterns rather than the original m-sequences. The switching sequences

above also have a higher phase switching frequency than the low order Walsh functions.

These properties make for excellent cross-talk rejection.

4. Application of m-sequences to the SMA

In the case of the SMA, we have 16 receivers that can be cross-correlated and the

minimum sample time is 10 ms. To use the method of nested Walsh functions requires 16

independent Walsh functions of length 16 steps (the same set of 16 Walsh functions can be

used for both the phase switching and sideband separation cycles). If each step contains

the minimum 10 ms of data, one complete cycle requires 2.56 seconds. Using the second

method in which both the �rst and second LO's are switched, the SMA with 16 receivers

would require 32 Walsh functions resulting in a cycle time of 0.32 s. While this cycle time is

acceptably short, the disadvantage for the SMA is that the second LO's of the SMA are in

the control building rather than the antennas. Drifts and spurious signals generated in the

antennas and transmission lines before the second LO's will not be removed by this phase

switching method.

Using the shifted m-sequences, we can perform both the phase switching and the

switching for sideband separation at the �rst LO and in a shorter cycle period than by

using nested Walsh functions. The shortest cycle period for 16 or fewer cross-correlated

receivers is 32 steps or 0.32 s (with a sample time of 10 ms) as opposed to 2.56 seconds with

the nested Walsh functions. The patterns based on m-sequences are orthogonal and also

have a higher switching frequency than those based on low order Walsh functions.
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