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Abstract

Recently Eric Keto of the Smithsonian
Astrophysical Observatory (Technical Memo Number 134)
suggested using four level, shifted m-sequences as an
alternative to two level Walsh functions used for
phase switching in interferometer arrays. Phase
switching is used to reduce DC level shifts, to
separate the sidebands, and it is used to provide
cross-talk and interference rejection. In order for
cross-talk and interference rejection to work, it is
necessary for all of the phase demodulation functions
for each of the baselines to be orthogonal. It is
also necessary for all of the antenna phase
modulators to be orthogonal. As bigger arrays are
designed and the need continues for shorter
integrations, there is a need for more efficient
switching schemes. The requirement for baseline and
antenna orthogonality places severe constraints on
the selection of switching functions. The crucial
question that must be answered in judging any
modulation scheme is how efficient it is in
supporting the largest antenna array in the fewest
steps. We examine m-sequences, normal two level Walsh
functions, and two kinds of complex Walsh functions.
It appears that, for large systems, even an ideal
solution may produce a set of phase modulation
functions that are too long for short integrations.

Discussion

Phase switching in interferometry refers to a method
whereby the first and/or second local oscillator in each of
the antenna receivers is modulated in order to remove DC
drift, separate the sidebands and eliminate cross-talk
between the antennas. When the local oscillators of two
antennas are in phase, their cross-correlation will be
positive. If they are 180 degrees out of phase relative to
each other then their cross-correlation will be negative.
The difference between these two measurements eliminates all



instrumental DC and provides a positive real cross-
correlation measurement. If the two antennas are 90 degrees
out of phase with each other then a positive imaginary
cross-correlation measurement will occur. If they are 270
degrees out of phase then the result will be a negative
imaginary cross-correlation measurement. Once again, the
difference between these measurements provides a positive
imaginary cross-correlation measurement. Sideband separation
occurs when a Fourier transform is taken of the real and
imaginary cross-correlation functions taken together as a
complex cross-correlation. Cross-talk may be eliminated by
using switching functions that are orthogonal. Square waves
could be used with a period that increases by a factor of
two at each antenna. As differences are taken interference
from the wrong antenna will be averaged to zero. Square
waves are not a very efficient way of doing it since adding
a new antenna requires a factor of two more time to complete
the sequence. Walsh functions are much more compact since
256 different orthogonal functions occupy only 256 steps.
Unfortunately, Walsh functions have only two states, +1 and
-1. Eric Keto has suggested a set of orthogonal functions
that have four states.

The Walsh switching schemes used at the Hat Creek Radio
Observatory and at the Owens Valley Radio Observatory are
functionally almost identical. At Hat Creek and Owens
Valley, in order to separate the sidebands, the first LO is
modulated by 90 degrees using a Walsh function. The first LO
is also switched by 180 degrees using a member of another
Walsh set that is completed during the time required for
each of the steps in the 90 degree sequence. At Hat Creek
180 degree switching is accomplished at a second LO using
another member of the 90 degree Walsh set. It is important
to recognize that, at Hat Creek, 180 degree switching could
have been accomplished by modulating the first LO. The first
LO would be modulated by the simple sum of 180 and 90
degrees depending upon the states of the two members of the
same Walsh set and this could be done using exactly the same
functions that are being used today. At Hat Creek a set of
256 Walsh functions requiring 256 steps to complete is being
used. At Owens Valley a set of 8 Walsh functions is used to
modulate by 90 degrees and a faster set of 8 Walsh functions
is used to modulate by 180 degrees for a total of 64 steps.
The Owens Valley system isolates the two functions of DC
removal and sideband separation. The main difference in the
two schemes is the way they are demodulated.

In order to see that the baseline demodulation
functions must be orthogonal, it is only necessary to assume
that two baselines in a three-antenna system have exactly



the same demodulation function. If there were cross-talk
between two of the antennas (say A and B) then baselines AC
and BC would both demodulate the cross-talk if they used the
same demodulation function. If AC and BC used orthogonal
demodulation functions then the cross-talk would average to
zero. By the same token, if antennas A and B were both
modulated by the same function then there would be no way to
distinguish between A and B if cross-talk occurred. It is
tempting to assume that orthogonal modulation functions at
the antennas will produce demodulation functions at the
baselines that are all orthogonal, however this is not the
case. In an ideal situation, an array of 16 antennas could
theoretically be modulated with 16 orthogonal 16-step
sequences. A 16 dimensional space has no more than 16
orthogonal sequences. Demodulation at the baselines must be
done with a 16-step sequence. A 16-antenna array has 120
baselines. In order to provide 120 orthogonal demodulation
functions it is necessary to have, at an absolute minimum,
120 steps.

It has been suggested to me that the requirements for
orthogonality could be relaxed in the case where baselines
AB and CD are involved. If baselines AB and CD both have the
same demodulation function then cross-talk would have to
occur between both A and C and B and D. While this situation
may be considered to be less likely it can still occur.
Unfortunately the flaw that allows cross-talk to occur
between A and C could be the same flaw that allows cross-
talk to occur between B and D. A few years ago I was sent to
Hat Creek to repair a "design flaw" in a telemetry system I
designed. At that time all of the signals to and from each
antenna in the BIMA array went through a single co-ax. All
of the co-axes entered the main building through feed-
through connectors mounted on an aluminum plate. That plate
conspired with those connectors to make a large adding
network that mixed signals from all of the antennas. Even
though there was sufficient cross-talk to cause occasional
errors in the telemetry, the system continued to produce
flawless images.

Walsh Functions

Things become quite complex when Walsh functions are
used to modulate both the 90 degree and the 180 degree phase
switching. Jack Welch and Eric Keto have both derived the
demodulation functions required for two state orthogonal
functions. I will outline here briefly the conditions
required for baseline orthogonality.



Given Walsh functions W0j W0k W1j W1k for antennas j & k
where W0 modulates by 90 degrees and W1 modulates by 180
degrees. The baseline demodulation functions are

Real C(W)jk = W1j*W1k*(1+W0j*W0k)
Imag S(W)jk = W1j*W1k*W0j*(1-W0j*W0k)

where
W0j*W0k switches between real and imaginary
W1j*W1k determines the sign of the real
W1j*W1k*W0j determines the sign of the imaginary

It is necessary that
C(W)jk dot C(W)mn = 0

and
S(W)jk dot S(W)mn = 0

for all jk != mn.

(* represents the vector product of the Walsh functions and
dot represents the scalar product.)

Considering C(W)
[W1j*W1k*(1+W0j*W0k)]dot[W1m*W1n*(1+W0m*W0n)]=0
[W1j*W1k+W1j*W1k*W0j*W0k]dot[W1m*W1n+W1m*W1n*W0m*W0n]=0
[W1j*W1k]dot[W1m*W1n]+
[W1j*W1k]dot[W1m*W1n*W0m*W0n]+
[W1j*W1k*W0j*W0k]dot[W1m*W1n]+
[W1j*W1k*W0j*W0k]dot[W1m*W1n*W0m*W0n] = 0

or since the product of two Walsh functions is another Walsh
function and all Walsh functions are orthogonal.

(1)  [W1j*W1k] != [W1m*W1n]
(2)  [W1j*W1k] != [W1m*W1n*W0m*W0n]
(3)  [W1j*W1k*W0j*W0k] != [W1m*W1n]
(4)  [W1j*W1k*W0j*W0k] != [W1m*W1n*W0m*W0n]

The Walsh products W1a*W1b and W1a*W1b*W0a*W0b must all be
mutually exclusive.

Considering S(W) a similar result
(1)  [W1j*W1k*W0j] != [W1m*W1n*W0m]
(2)  [W1j*W1k*W0j] != [W1m*W1n*W0m*W0n]
(3)  [W1j*W1k*W0j*W0k] != [W1m*W1n*W0m]
(4)  [W1j*W1k*W0j*W0k] != [W1m*W1n*W0m*W0n]

The Walsh products W1a*W1b*W0a and W1a*W1b*W0a*W0b must all
be mutually exclusive.

While 256 Walsh functions may seem like more than
enough to satisfy the requirements of a 45 baseline 10
antenna interferometer like the BIMA array at Hat Creek it,
just barely makes it. We have constructed a computer program
to find a set of valid Walsh functions for an interferometer



of any size. If one more antenna is added to our system, the
above conditions for orthogonality cannot be met. If the
Walsh sequence is doubled to 512 separate Walsh functions
then a solution for only 13 antennas or 78 baselines can be
found. If the Walsh sequence is extended to 1024 steps then
a solution exists for 17 antennas or 136 baselines.

Four State Sequences

Demodulation is rather simple with four state
sequences. If A represents a sequence modulating one antenna
and B a sequence modulating another then the cross-
correlator output from these two antennas will be the
complex vector product of the two sequences.

M = A ⋅ B*

Any time M is in the +1 state the cross-correlation function
is positive real. If it is -1 it will be negative real. If
it is +j then it will be positive imaginary, and if it is -j
then the cross-correlation function will be negative
imaginary.

If the real part of M is identical to the real part of
another demodulation function then it is possible for cross-
talk to occur in the real part of the cross-correlation
measurement. In order to assure that this does not happen
the four level functions should be constrained in the same
way that the two level functions are. Given baseline
demodulation functions M and N:

2⋅Real M = M + M*

2⋅Imag M = M - M*

It is necessary that
Real M dot Real N = 0
Imag M dot Imag N = 0

for all different baselines.

Considering the real part:
(M+M*) dot (N+N*) = 0
MdotN+MdotN*+M*dotN+M*dotN* = 0

A similar result for the imaginary part implies that not
only must a demodulation function be orthogonal to all other
demodulation functions but its complex conjugate must be as
well. Similar reasoning applies to the modulation functions
used at the antennas.



In order for demodulation to work, the correlator must
spend the same amount of time in each state. Any switching
function used as a demodulator must, therefore, have the
same number of steps in each of the four states. A similar
constraint is not required for the antennas since,
conceivably, one antenna may not switch at all while the
antenna it’s being correlated with does all of the
switching. The only constraints on the antenna modulators
are that they be orthogonal and not the complex conjugates
of each other.

Requirements for Demodulation

Given a potential baseline set of demodulator sequences
Mn and any antenna modulator sequence A0 a set of orthogonal
antenna modulators may be found by simple multiplication.
If, for example, A0 and A1 are two sequences feeding a
baseline, the baseline may be demodulated by a sequence M0
where

A1⋅A0* = M0
We can solve for A1 given A0 and M0;

A1⋅A0*⋅A0 = M0⋅A0
A1 = M0⋅A0

All of the antennas in the array will be cross correlated
with A0 so that given any known demodulation sequence Mn the
other antenna sequences may be derived.

A2 = M1⋅A0
A3 = M2⋅A0
…………………………………

Am = Mm-1⋅A0
Since all of the antenna sequences are now fixed given an
initial set of baseline demodulators, all of the other
baseline demodulators can be derived. Given any two antennas
A2 and A3, the baseline demodulator is

A2⋅A3* = M1⋅A0⋅M2*⋅A0* = M1⋅M2*

A0
A1 M0

A2 M0⋅M1* M1
A3 M1⋅M2* M0⋅M2* M2

… … … … …
An+1 … M2⋅Mn* M1⋅Mn* M0⋅Mn* Mn

Table of Antennas and Their Baseline Demodulators

The baseline demodulators can all be selected independent of
any antenna modulators. Further, any set of antenna



sequences selected in the above manner will be orthogonal
since

A2dotA3 = Σ A2⋅A3* = Σ M1⋅M2* = 0
because all of the Mn are orthogonal. Considering the
special case of A0

A0dotA1 = Σ A0⋅A1* = Σ M0* = 0
because M0 has an equal number of steps of 1, -1, j and -j.

The above observations may be used to build a general
purpose demodulation selection program to be used for
evaluating any set of orthogonal sequences. The selection
program need not consider the antenna sequences at all but
need only concentrate on finding a suitable set of baseline
demodulators.

Shifted m-sequences

M-sequences or maximal length pseudo-random sequences
are probably more familiar to people in the binary form.
These sequences have a length equal to

len = qm-1

where len is the total length of the sequence, q is the
number of levels in each element of the sequence and m is
the length of the shift-register used to generate the
sequence. The circuit appears as follows

                                         shift register
                     a1  a2 a3 a4  a5 a6
                                         multipliers
             -a0

                    ∑
                 ∑

The shift register is shifting from left to right and each
element of the shift register must be wide enough to
represent all of the levels. If q = 3 then the width must be
two bits. If each element of the shift register is viewed as
a delay operator then the above loop can be expressed as a
polynomial where ∆ represents a delay.

0 = a0 + ∆a1 + ∆2a2 + ∆3a3 + ∆4a4 + ∆5a5 + ∆6a6

The arithmetic used for this polynomial is to the modulus of
the number of levels. Expressed in the C programming
language,



c = (a+b)%q and c = (a*b)%q

When this circuit is turned on, it produces a stream of
numbers that look very much like white noise. It has an
auto-correlation function that is an impulse at zero lag and
all the rest of the lags are a very small constant number
until it reaches a lag that corresponds to the end of the
sequence where it repeats the impulse and sequence of almost
zero lags. It is a completely predictable noise source.

This very mysterious circuit will work for all
polynomials that cannot be factored or expressed as the
ratio of two polynomials (primitive and irreducible). They
are called maximal length because they go through all
possible combinations of q things taken m at a time. It is
easily seen why one of the combinations is missing. If all
zeros enter the system, it grinds to a halt. Unfortunately
this circuit, as described, works only with q equal to a
prime number. If you want a system that works with 4 levels
you must change the rules slightly.

+ 0 1 α β
0 0 1 α β
1 1 0 β α
α α β 0 1

β β α 1 0

. 0 1 α β
0 0 0 0 0
1 0 1 α β
α 0 α β 1

β 0 β 1 α

            Addition                      Multiplication

With modified arithmetic the same principals apply and a set
of maximal length four level sequences becomes available.
Unfortunately the auto-correlation of these sequences is not
quite as clean as in the case of prime level modulo
arithmetic. The expected spike appears at zero lag but
smaller spikes also appear at 1/3 and 2/3 the total length
of the sequence.

Neither prime level nor four level maximal length
sequences are exactly orthogonal. Eric Keto provides two
methods to make the sequences orthogonal. First, the missing
state must be added to the beginning of each of the
sequences. In the case of prime level sequences, this
modification is all that is necessary. There will be qm-1
orthogonal sequences of length qm. The case of four level
sequences is a little more difficult. Adding the missing
state to the beginning of each sequence results in only the
first third of the sequences being orthogonal. In order to
make the full set of qm-1 shifted sequences orthogonal, you
change the signs of either the real or the imaginary numbers



and concatenate it with the original sequence extending the
total number of steps required to complete the sequence to
2*qm.

Shifted m-sequences as modified by Eric Keto have two
characteristics which make them promising as demodulation
functions. First, they are an orthogonal set. Second, they
give equal representation to the products 1, -1, j and -j
over the sequence interval. The vector product of any two
Keto sequences is not a member of the original set. The
interesting thing is the fact that all of the vector
products appear to have equal numbers of each of the states.

Complex Walsh Functions

The following scheme originated with Ferdinand R.
Ohnsorg of the Systems and Research Division Honeywell Inc.
in an article that appeared in the “Applications of Walsh
Functions” 1970 proceedings symposium and workshop held at
the Naval Research Laboratory, Washington, D. C.

A set of complex Walsh functions that take on the
values of +1, -1, +j and -j may be generated in a manner
similar to a method used for ordinary Walsh functions. A
Hadamard array is generated. For ordinary Walsh functions
each element of the Hadamard array is defined as

Hmn = (-1)
m.n

where m represents the column index and n the row index. The
product m.n is the scalar product of the binary
representation of m and n treated as vectors.

                             m
0 1 2 3 4 5 6 7

0 +1 +1 +1 +1 +1 +1 +1 +1
1 +1 -1 +1 -1 +1 -1 +1 -1
2 +1 +1 -1 -1 +1 +1 -1 -1
3 +1 -1 -1 +1 +1 -1 -1 +1
4 +1 +1 +1 +1 -1 -1 -1 -1
5 +1 -1 +1 -1 -1 +1 -1 +1
6 +1 +1 -1 -1 -1 -1 +1 +1
7 +1 -1 -1 +1 -1 +1 +1 -1

Hadamard Array

Each of the rows of the above array represents a different
Walsh function.

A modified complex array results if we change the
ritual.



Mmn = (-1)
m.n(-j)m.n/2

0 1 2 3 4 5 6 7
0 +1 +1 +1 +1 +1 +1 +1 +1
1 +1 -1 +1 -1 +1 -1 +1 -1
2 +1 -j -1 +j +1 -j -1 +j
3 +1 +j -1 -j +1 +j -1 -j
4 +1 +1 -j -j -1 -1 +j +j
5 +1 -1 -j +j -1 +1 +j -j
6 +1 +1 +j +j -1 -1 -j -j
7 +1 -1 +j -j -1 +1 -j +j

Modified Array

Each row of the above modified array is a suitable complex
Walsh function. The length of these Walsh functions is a
power of 2. Each of the terms 1, -1, j and -j appear an
equal number of times except for the first two sequences
making all but two of them suitable for demodulation. Unlike
the m-sequences some of the vector products in this set do
belong to the original set but not all of them.

Yet More Complex Walsh Functions

Another approach to complex Walsh function formation is
provided by H.E. Chrestenson. This approach relies on the
use of multilevel Rademacher functions. Two level Rademacher
functions are simple square waves. The lowest (zero) order
Rademacher function is a square wave that starts as a 1 and
ends as a -1. The next function (one) is twice the frequency
also starting with a 1. The functions increase in order with
each factor of two increase in frequency. Two level Walsh
functions are generated from these Rademacher functions by
first expressing the Walsh sequency as a binary number. The
least significant bit of this number is used as an exponent
for the zero order Rademacher function. The next bit is used
as the exponent for the next order function until all bits
are used. All of these functions are multiplied together to
produce the Walsh function of the desired sequency.

Waln = (Rad0)
v0(Rad1)

v1(Rad2)
v2(Rad3)

v3…

Where
n = v0+2*v1+4*v2+8*v3…  all v = 0 or 1

In order to produce complex Walsh functions, the lowest
order (zero) four level Rademacher function must take on the



following values in sequence, 1, j, -1, -j. The next order
(one) is 4 times the frequency of the lowest order. It goes
through a complete cycle of the same sequence for each state
of the zero order Rademacher function. This time, Walsh
sequency must be expressed as a four state number rather
than a two state binary number. Each digit in the 4 state
sequency number acts as an exponent for the corresponding 4
level Rademacher function.

Waln = (Rad0)
v0(Rad1)

v1(Rad2)
v2(Rad3)

v3…

Where
n = v0+4*v1+16*v2+64*v3…  all v = 0, 1, 2 or 3

+1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
+1 +1 +1 +1 +j +j +j +j -1 -1 -1 -1 -j -j -j -j
+1 +1 +1 +1 -1 -1 -1 -1 +1 +1 +1 +1 -1 -1 -1 -1
+1 +1 +1 +1 -j -j -j -j -1 -1 -1 -1 +j +j +j +j
+1 +j -1 -j +1 +j -1 -j +1 +j -1 -j +1 +j -1 -j
+1 +j -1 -j +j -1 -j +1 -1 -j +1 +j -j +1 +j -1
+1 +j -1 -j -1 -j +1 +j +1 +j -1 -j -1 -j +1 +j
+1 +j -1 -j -j +1 +j -1 -1 -j +1 +j +j -1 -j +1
+1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1 +1 -1
+1 -1 +1 -1 +j -j +j -j -1 +1 -1 +1 -j +j -j +j
+1 -1 +1 -1 -1 +1 -1 +1 +1 -1 +1 -1 -1 +1 -1 +1
+1 -1 +1 -1 -j +j -j +j -1 +1 -1 +1 +j -j +j -j
+1 -j -1 +j +1 -j -1 +j +1 -j -1 +j +1 -j -1 +j
+1 -j -1 +j +j +1 -j -1 -1 +j +1 -j -j -1 +j +1
+1 -j -1 +j -1 +j +1 -j +1 -j -1 +j -1 +j +1 -j
+1 -j -1 +j -j -1 +j +1 -1 +j +1 -j +j +1 -j -1

Rademacher derived Walsh functions in sequency order.

Unlike the Hadamard derived Walsh functions, which must
be a power of two in length, the Rademacher derived Walsh
functions must be a power of four in length. Not all of the
Rademacher Walsh functions have an equal number of 1, j, -1,
and -j states so more Hadamard Walsh functions make suitable
demodulation functions.

The Rademacher derived Walsh functions have a
characteristic that is similar to two level Walsh functions.
The complex vector product of any two functions results in
another function that is a member of the original set. The
sequency of the complex vector product of any two functions
is the mod 4 sum of the sequencies of the two functions. The
sequency is expressed as a four state number having values
0, 1, 2, and 3 for each of the digits. Each of the digits of
the two numbers are added without carry. The resulting
number is the sequency of the product. This characteristic



makes finding baseline demodulators much easier than the
trial and error methods required for the other sets.

The Results of Testing

A program was written to find the maximum number of
antennas that could be supported by a given set of
orthogonal functions. M-sequencies (m-seq.), Hadamard
derived (H-Wal) and Radamacher derived (R-Wal) Walsh
functions were tested. A second program was written to test
only the Radamacher derived functions since they are more
predictable and larger arrays can be handled more
efficiently. Both programs produced the same results on the
smaller arrays. The test results are compared to our current
way of modulating the system (Wal) at Hat Creek.

Steps Wal m-seq. H-Wal R-Wal
16 3 X 4 4
32 4 3 6 X
64 6 X 7 8
128 7 5 10 X
256 10 X 12 15
512 13 15 X
1024 17 22

Antennas supported for a given number of steps.

The clear winner is the set of Radamacher derived Walsh
functions. Radamacher derived Walsh functions, however,
increase in steps by factor of four jumps. Hadamard derived
Walsh functions may have an advantage in situations where a
factor of two jump is adequate for the needs of the array.
The Hat Creek array at ten antennas could, for instance,
reduce its current 256 step switching sequence to 128 steps
and reduce its minimum integration time by a factor of two
by using a set of Hadamard derived Walsh functions, whereas
a Radamacher derived set would require 256 steps.

Conclusions

Even the most efficient set of functions is remarkably
wasteful. At 1024 steps the Radamacher derived functions can
take care of only 22 antennas or 231 baselines. Out of 1024
functions only 231 are found to be suitable for baseline
demodulation. An ideal set of functions should be capable of
handling 45 antennas (990 baselines) with that many steps.
The problem becomes worse when each antenna is fitted with
dual polarization receivers. Since all of the cross products
of both polarizations must be measured, the problem
increases by a factor of four. An ideal set of functions



with 1024 steps would demodulate the signals from only 23
antennas (253 baselines) in a dual polarization system.

One of the purposes of switching is to eliminate cross-
talk between the antennas occurring from the antenna to the
point where the data is digitized. If this purpose is no
longer required then things become much simpler. Simple
square waves could be used to eliminate DC and to separate
the sidebands. One way to eliminate the need for elaborate
demodulation schemes is to digitize the signal at the
antennas. Once the signal is digitized there is no longer
any danger from cross talk. Another possibility is the use
of fiber-optic links from the antennas to the main building.
An optical signal must, however, be turned into an
electrical one, at some point, in order for it to be
digitized. It is at this point that cross-talk becomes a
danger.



References

Keto, Eric Shifted m-sequences for Phase Switching
Smithsonian Astrophysical Observatory Submillimeter Array
Project Technical Memo Number 134 March 24 1999

Welch, W.J., et al., The Berkeley-Illinois-Maryland-
Association Millimeter Array, PASP, 108, pp. 93-103 1996

Urry, W.L. et al., The Hat Creek Millimeter-Wave Hybrid
Spectrometer for Interferometry PASP, vol. 97, pp. 745-751,
Aug. 1985.

Beauchamp, K.G. Walsh Functions and Their Applications
Academic Press 1975 ISBN: 0-12-084050-2

Ohnsorg, Ferdinand R. Application of Walsh Functions to
Complex Signals Application of Walsh Functions. 1970
Proceedings Symposium and Workshop Held at Naval Research
Laboratory, Washington, D.C. March 31-April 3 AD707431

Chrestenson, H.E. A Class of Generalized Walsh
Functions Pacific J. Math., 5:17-31 1955

Acknowledgments

Thanks go to J.A. Hudson for finding Radamacher derived
Walsh functions and writing the search software for finding
suitable Radamacher derived Walsh demodulation functions.


