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Abstr act

Recently Eric Ket o of t he Sm t hsoni an
Ast rophysi cal Qbservatory (Technical Mno Nunber 134)
suggested using four level, shifted m sequences as an
alternative to tw level Walsh functions used for
phase switching in interferoneter arrays. Phase
switching is used to reduce DC |evel shifts, to
separate the sidebands, and it is used to provide
cross-talk and interference rejection. In order for
cross-talk and interference rejection to work, it is
necessary for all of the phase denodul ati on functions
for each of the baselines to be orthogonal. It is
al so necessary for all of the antenna phase
nodul ators to be orthogonal. As bigger arrays are
designed and the need <continues for shorter
integrations, there is a need for nore efficient
switching schenes. The requirenent for baseline and
antenna orthogonality places severe constraints on
the selection of switching functions. The crucial
guestion that nust be answered in judging any
nodul ation schenme s how efficient It is in
supporting the largest antenna array in the fewest
steps. W exam ne m sequences, normal two | evel Walsh
functions, and two kinds of conplex Wil sh functions.
It appears that, for large systens, even an ideal
solution nmay produce a set of phase nodulation
functions that are too long for short integrations.

Di scussi on

Phase switching in interferonetry refers to a nethod
whereby the first and/or second |local oscillator in each of
the antenna receivers is nodulated in order to renove DC
drift, separate the sidebands and elimnate cross-talk
between the antennas. Wen the local oscillators of two

antennas are in phase, their «cross-correlation wll be
positive. If they are 180 degrees out of phase relative to
each other then their cross-correlation wll be negative

The di fference between these two neasurenents elimnates al



i nstrunent al DC and provides a positive real cross-
correlation neasurenent. |If the two antennas are 90 degrees
out of phase with each other then a positive imaginary
cross-correlation neasurenent will occur. If they are 270
degrees out of phase then the result wll be a negative
i magi nary cross-correlation neasurenent. Once again, the
difference between these neasurenents provides a positive
I magi nary cross-correlation nmeasurenment. Sideband separation
occurs when a Fourier transform is taken of the real and
i magi nary cross-correlation functions taken together as a
conpl ex cross-correlation. Cross-talk may be elimnated by
using switching functions that are orthogonal. Square waves
could be used with a period that increases by a factor of
two at each antenna. As differences are taken interference
from the wong antenna wll be averaged to zero. Sqguare
waves are not a very efficient way of doing it since adding
a new antenna requires a factor of two nore tinme to conplete
t he sequence. Walsh functions are much nore conpact since
256 different orthogonal functions occupy only 256 steps.
Unfortunately, Walsh functions have only two states, +1 and
-1. Eric Keto has suggested a set of orthogonal functions
t hat have four states.

The Wal sh switching schenes used at the Hat Creek Radio
(bservatory and at the Omens Valley Radio Qbservatory are
functionally alnost identical. At Hat Creek and Owens
Vall ey, in order to separate the sidebands, the first LOis
nmodul at ed by 90 degrees using a Wal sh function. The first LO
is also switched by 180 degrees using a nenber of another
Wal sh set that is conpleted during the tine required for
each of the steps in the 90 degree sequence. At Hat Creek
180 degree switching is acconplished at a second LO using
anot her nenber of the 90 degree Walsh set. It is inportant
to recognize that, at Hat Creek, 180 degree switching could
have been acconplished by nodulating the first LO The first
LO would be nodulated by the sinple sum of 180 and 90
degrees dependi ng upon the states of the two nenbers of the
same Wal sh set and this could be done using exactly the sane
functions that are being used today. At Hat Creek a set of
256 Wal sh functions requiring 256 steps to conplete is being
used. At Onens Valley a set of 8 Wal sh functions is used to
nmodul ate by 90 degrees and a faster set of 8 WAl sh functions
is used to nodul ate by 180 degrees for a total of 64 steps.
The Onens Valley system isolates the two functions of DC
renmoval and sideband separation. The nmain difference in the
two schenes is the way they are denodul at ed.

In order to see that the baseline denodulation
functions nmust be orthogonal, it is only necessary to assune
that two baselines in a three-antenna system have exactly



the sanme denodulation function. If there were cross-talk
between two of the antennas (say A and B) then baselines AC
and BC woul d both denodul ate the cross-talk if they used the
sanme denodul ation function. If AC and BC used orthogonal
denodul ati on functions then the cross-talk would average to
zero. By the same token, if antennas A and B were both
nodul ated by the sanme function then there would be no way to
di stingui sh between A and B if cross-talk occurred. It is
tenpting to assune that orthogonal nodul ation functions at
the antennas w Il produce denodulation functions at the
baselines that are all orthogonal, however this is not the
case. In an ideal situation, an array of 16 antennas could
theoretically be nodulated wth 16 orthogonal 16-step
sequences. A 16 dinensional space has no nore than 16
ort hogonal sequences. Denodul ation at the baselines nust be
done with a 16-step sequence. A 16-antenna array has 120
baselines. In order to provide 120 orthogonal denodul ation
functions it is necessary to have, at an absolute m ni num
120 st eps.

It has been suggested to ne that the requirenents for
orthogonality could be relaxed in the case where baselines
AB and CD are involved. If baselines AB and CD both have the
same denodul ation function then cross-talk would have to
occur between both A and C and B and D. Wiile this situation
may be considered to be less likely it can still occur
Unfortunately the flaw that allows <cross-talk to occur
between A and C could be the sane flaw that allows cross-
talk to occur between B and D. A few years ago | was sent to
Hat Creek to repair a "design flaw' in a telenetry system|
designed. At that tine all of the signals to and from each
antenna in the BIMA array went through a single co-ax. Al
of the co-axes entered the main building through feed-
t hrough connectors nounted on an alum num plate. That plate
conspired with those connectors to nake a large adding
network that mxed signals from all of the antennas. Even
t hough there was sufficient cross-talk to cause occasiona
errors in the telenetry, the system continued to produce
fl awl ess i1 mages.

Wal sh Functi ons

Thi ngs becone quite conplex when Walsh functions are
used to nodul ate both the 90 degree and the 180 degree phase
switching. Jack Welch and Eric Keto have both derived the
denodul ation functions required for two state orthogonal
functions. | wll outline here briefly the <conditions
required for baseline orthogonality.



G ven Walsh functions Wj Wk W,j Wk for antennas j & k
where W nodul ates by 90 degrees and W nodul ates by 180
degrees. The basel i ne denodul ati on functions are

Real C(Wjk = W,j*Wk*(1+W)j * WKk)
lmag S(Wjk = W) *WLk*W)j *( 1- W] *WDK)
wher e
WOj * WOk swi tches between real and inmaginary
WLj * WLk determ nes the sign of the real
WL *WLk* WD determ nes the sign of the imaginary

It is necessary that

C(Wjk dot C(Wm =0
and

S(Wjk dot S(Wm = 0
for all jk '= m.

(* represents the vector product of the Wil sh functions and
dot represents the scal ar product.)

Consi dering C(W
[ W) *WLK* ( 1+WDj *WDk) ] dot [ WL WANn* ( 1+WOnT\WDNn) | =0
[ W) *WLK+WLj * WLk* W] *WDK] dot [ WLt WAn+WLmF WLn* WOnt WOn] =0
[ Wj *WLK] dot [ WL WAN] +
[ W) *WLK] dot [ WLt WLn* WD WOn] +
[ W) *WLK* WDj * WDK] dot [ WLmF WLn] +
[ W) *WLK* WD) * WDK] dot [ WLmF WLn* WOntWOn] = O
or since the product of two Wal sh functions is another Wl sh
function and all Wal sh functions are orthogonal .
(1) [Wj*WLKk] !'= [WLmrWLn]
(2) [Wj*WLK] !'= [WLmWLn* \VWOnTWON]
(3) [Wj *WLk*WDj *WOK] !'= [ WLnTWLN]
(4) [Wj*WLk*WDj *WOKk] !'= [ WLnTWLn* WD VON]
The WAl sh products Wa*Wlb and Wa*Wb*Wa*Wb nust all be
mut ual 'y excl usi ve.

Considering S(W a simlar result

(1) [Wj*Wk*W0j ] !'= [WLnmrWLn* WM

(2) [Wj*Wk*Wj] != [ WLntWLN* VWO WWOn]

(3) [Wj *WLk*Wj *WOk] != [ WL WLn* WM

(4) [Wj *WLk*W0j) *WOk] != [ WLt WLn* WOt \WON]
The WAl sh products Wa*Wb*Wa and Wa*W.b*Wa*Wb nust all
be mutual |y excl usive.

While 256 Walsh functions may seem like nore than
enough to satisfy the requirenents of a 45 baseline 10
antenna interferoneter like the BIMA array at Hat Creek it,
just barely makes it. W have constructed a conputer program
to find a set of valid Wal sh functions for an interferoneter



of any size. If one nore antenna is added to our system the
above conditions for orthogonality cannot be net. If the
Wal sh sequence is doubled to 512 separate WAl sh functions
then a solution for only 13 antennas or 78 baselines can be
found. If the Wal sh sequence is extended to 1024 steps then
a solution exists for 17 antennas or 136 basel i nes.

Four State Sequences

Denodul ation is rather sinple wth four state
sequences. |If A represents a sequence nodul ati ng one antenna
and B a sequence nodulating another then the cross-
correlator output from these two antennas wll be the
conpl ex vector product of the two sequences.

M= A xB

Any time Mis in the +1 state the cross-correlation function
is positive real. If it is -1 it will be negative real. If
it is 4+ thenit wll be positive imaginary, and if it is -j
then the cross-correlation function wll be negative
i magi nary.

If the real part of Mis identical to the real part of
anot her denodul ation function then it is possible for cross-
talk to occur in the real part of the cross-correlation
measurenent. In order to assure that this does not happen
the four level functions should be constrained in the sane
way that the two level functions are. Gven baseline
denodul ati on functions Mand N

2Real M= M+ M
2xmg M= M- M

It is necessary that
Real Mdot Real N =0
lmag Mdot Imag N =0

for all different baselines.

Consi dering the real part:
(MtM) dot (N+N) =0
Mlot N+Mdot N +Mdot N+Mdot N = 0

A simlar result for the imaginary part inplies that not
only nust a denodul ation function be orthogonal to all other
denodul ati on functions but its conplex conjugate nust be as
well. Simlar reasoning applies to the nodul ati on functions
used at the antennas.



In order for denodul ation to work, the correl ator nust
spend the sanme anount of tinme in each state. Any sw tching
function used as a denodulator nust, therefore, have the
sanme nunber of steps in each of the four states. A simlar

constraint is not required for the antennas since,
concei vably, one antenna may not switch at all while the
antenna it’'s being correlated wth does all of the

switching. The only constraints on the antenna nodul ators
are that they be orthogonal and not the conplex conjugates
of each ot her.

Requi rements for Denodul ati on

G ven a potential baseline set of denodul at or sequences
M, and any antenna nodul at or sequence A, a set of orthogonal
antenna nodul ators may be found by sinple nultiplication.
If, for exanple, A and A, are two sequences feeding a
basel ine, the baseline may be denodul ated by a sequence M
wher e

Avhy = M
We can solve for A, given Ay and M;
Apfo Ay = Mof
AL = Mo
All of the antennas in the array will be cross correlated

wth Ab so that given any known denodul ati on sequence M the
ot her antenna sequences may be deri ved.

A = M

Az = Mo

An = MR
Since all of the antenna sequences are now fixed given an
initial set of baseline denodulators, all of the other

basel i ne denodul ators can be derived. G ven any two antennas
A, and As;, the baseline denodulator is

AAs = MAM A, = MM

Ao
A Vb

A, VhM ™ M

As MM M M

Anst MM MM MM M

Tabl e of Antennas and Their Baseli ne Denodul ators

The basel i ne denodul ators can all be sel ected i ndependent of
any antenna nodul ators. Further, any set of antenna



sequences selected in the above manner wll be orthogona
si nce

AdotA; = S AvAs = S MM =0
because all of the M are orthogonal. Considering the
speci al case of A

AodOtAl =S Ao>p\1ik =S Nb* =0
because My, has an equal nunber of steps of 1, -1, j and -j.

The above observations may be used to build a genera
purpose denodul ation selection program to be used for
evaluating any set of orthogonal sequences. The selection
program need not consider the antenna sequences at all but
need only concentrate on finding a suitable set of baseline
denodul at or s.

Shi fted m sequences

M sequences or maxinmal |ength pseudo-random sequences
are probably nore famliar to people in the binary form
These sequences have a |l ength equal to

len = g™ 1
where len is the total length of the sequence, q is the
nunber of levels in each elenent of the sequence and mis
the length of the shift-register used to generate the
sequence. The circuit appears as follows

shift register

mul tipliers

The shift register is shifting fromleft to right and each
element of the shift register nust be wde enough to
represent all of the levels. If q = 3 then the width nust be
two bits. If each elenment of the shift register is viewed as
a delay operator then the above |oop can be expressed as a

pol ynom al where D represents a del ay.

0 = ap + Da; + DPa, + D’a; + D*a, + D’as + D°as

The arithnmetic used for this polynomal is to the nodul us of
the nunber of levels. Expressed in the C progranmm ng
| anguage,



c = (ath)% and ¢ = (a*b) %

When this circuit is turned on, it produces a stream of
nunbers that |ook very nuch like white noise. It has an
auto-correlation function that is an inpulse at zero | ag and
all the rest of the lags are a very small constant nunber
until it reaches a lag that corresponds to the end of the
sequence where it repeats the inpul se and sequence of al nost
zero lags. It is a conpletely predictabl e noise source.

This very nysterious circuit wll work for al
pol ynom als that cannot be factored or expressed as the
ratio of two polynomals (primtive and irreducible). They
are called maximal |ength because they go through al
possi bl e conbinations of g things taken mat a tine. It is
easily seen why one of the conbinations is mssing. If all
zeros enter the system it grinds to a halt. Unfortunately
this circuit, as described, works only with g equal to a
prime nunber. |If you want a systemthat works with 4 |evels
you nust change the rules slightly.

+01ab Olab
0{0[1]|alb o(o(ofoy|o
1[1[0[pla 1/0]1]alb
ala|b|0|1 alOlalbl|l
blblal|l]0 b|O|b|l]a
Addi tion Mul tiplication

Wth nodified arithnmetic the same principals apply and a set
of maximal length four I|evel sequences becones avail able
Unfortunately the auto-correlation of these sequences is not
quite as clean as in the case of prine level nodulo
arithnmetic. The expected spike appears at zero l|lag but
smal | er spikes also appear at 1/3 and 2/3 the total length
of the sequence.

Neither prime level nor four level maximal |ength
sequences are exactly orthogonal. Eric Keto provides two
nmet hods to make the sequences orthogonal. First, the m ssing
state nust be added to the beginning of each of the
sequences. In the case of prine |evel sequences, this
nodification is all that is necessary. There will be ™1
ort hogonal sequences of length g™ The case of four |eve
sequences is a little nore difficult. Adding the m ssing
state to the beginning of each sequence results in only the
first third of the sequences being orthogonal. In order to
make the full set of g™1 shifted sequences orthogonal, you
change the signs of either the real or the inmaginary nunbers



and concatenate it with the original sequence extending the
total nunber of steps required to conplete the sequence to
2*qg™.

Shifted msequences as nodified by Eric Keto have two
characteristics which nmake them prom sing as denodul ation
functions. First, they are an orthogonal set. Second, they
give equal representation to the products 1, -1, j and -j
over the sequence interval. The vector product of any two
Keto sequences is not a nenber of the original set. The
interesting thing is the fact that all of the vector
products appear to have equal nunbers of each of the states.

Conpl ex Wal sh Functi ons

The followng schene originated with Ferdinand R
Chnsorg of the Systens and Research Division Honeywell Inc.
in an article that appeared in the “Applications of Walsh
Functions” 1970 proceedi ngs synposium and workshop held at
t he Naval Research Laboratory, Washington, D. C

A set of conplex Wil sh functions that take on the
values of +1, -1, 4 and -j may be generated in a manner
simlar to a method used for ordinary Walsh functions. A
Hadamard array is generated. For ordinary Wl sh functions
each el enent of the Hadamard array is defined as

Hm = (-1)™"

where mrepresents the colum index and n the row i ndex. The
pr oduct mn is the scalar pr oduct of the binary
representation of mand n treated as vectors.

m
0 1 2 3 4 5 6 7
+1 [(+1 |[+1 |[+1 (+1 (+1 |[+1 |[+1
+1 (-1 |(+1 |[-1 (+1 (-1 |[+1 (-1
+1 (+1 (-1 |[-1 (+1 (+1 |-1 (-1
+1 (-1 |(-1 |[+1 (+1 (-1 |[-1 |[+1
+1 |(+1 |(+1 ([(+1 (-1 (-1 |[-1 (-1
+1 (-1 [(+1 |[-1 (-1 (+1 |[-1 |[+1
+1 (+1 (-1 |[-1 (-1 (-1 |[+1 |[+1
+1 (-1 |(-1 |[+1 (-1 (+1 |[+1 (-1
Hadamard Array

N[O O B W N[O

Each of the rows of the above array represents a different
Wal sh function

A nodified conplex array results if we change the
ritual .



Mm — (_1)mn(_j)mn/2

0 1 2 3 4 5 6 7
+1 +1 +1 +1 +1 +1 +1 +1
+1 -1 +1 -1 +1 -1 +1 -1
+1 -] -1 + +1 -] -1 +
I N T O N Y
+1 +1 -] -] -1 -1 + +
+1 -1 -] + -1 +1 + -]
+1 +1 + + -1 -1 -] -]
+1 -1 + -] -1 +1 -] +
Modi fied Array

N[O O B W N[O

Each row of the above nodified array is a suitable conplex
Wal sh function. The length of these Walsh functions is a
power of 2. Each of the terns 1, -1, | and -] appear an
equal nunber of times except for the first two sequences
maki ng all but two of themsuitable for denodul ation. Unlike
t he m sequences sone of the vector products in this set do
belong to the original set but not all of them

Yet More Conpl ex Wal sh Functi ons

Anot her approach to conpl ex Wal sh function formation is
provided by H E. Chrestenson. This approach relies on the
use of nultilevel Rademacher functions. Two | evel Rademacher
functions are sinple square waves. The |owest (zero) order
Rademacher function is a square wave that starts as a 1 and
ends as a -1. The next function (one) is twice the frequency
al so starting with a 1. The functions increase in order with
each factor of two increase in frequency. Two |evel WAlsh
functions are generated from these Rademacher functions by
first expressing the Wal sh sequency as a binary nunber. The
| east significant bit of this nunber is used as an exponent
for the zero order Rademacher function. The next bit is used
as the exponent for the next order function until all bits
are used. Al of these functions are nultiplied together to
produce the Wal sh function of the desired sequency.

Wal , = (Radg) "°( Rad;) V*( Rad,) Y3( Rads) ¥3...

VWher e
n = vOo+2*v1+4*v2+8*v3... all v = 0 or 1

In order to produce conplex WAl sh functions, the | owest
order (zero) four |evel Rademacher function nust take on the



follow ng values in sequence, 1, j, -1, -j. The next order
(one) is 4 tinmes the frequency of the |lowest order. It goes
through a conplete cycle of the sane sequence for each state
of the zero order Rademacher function. This tinme, Wlsh
sequency nust be expressed as a four state nunber rather
than a two state binary nunber. Each digit in the 4 state
sequency nunber acts as an exponent for the corresponding 4
| evel Rademacher function.

Wal , = (Radg) "°( Rad;) V*( Rad,) Y3( Rads) ¥3...

VWher e
n = v0+4*v1+16*v2+64*v3... all v =0, 1, 2 or 3

+1|+1 |+1 |+1 (+1 [+1 |+1 |+1 [+1 |[+1 |+1 |+1 |+1 |+1 |+1 |+1

(L [+ (P2 [ [+ [H [H [T [T [T T[] [ [-] []

+1|+1 |+1 |+1 (-1 (-1 |-12|-1(+1 |+1 |+1 |+1 |-1 |-1 |-1|-1

+1 (41 [+1 [+1 -] [-] [-7 -7 [-2 -2 (-2 0-21+4 [+ [+ [+

L[ (-2 [-] [FT [ [T (-] [# [ [T (-] [FT[+H [-T[]

FL[H (-2 [ (¥ [T -] [FT -2 [-] [+ [+ [-] [+1[% [-1

L[ (-1 [-) [T [ [FT [ [# [ [T (-] [~T[-] [+1[4]

F [ (-1 [ [-] [*L % [T (-1 [-] [+ [+ [% [-T[-] [+1

+1|-1 |+ |-1 (+1 (-1 |+1|-1 |(+1 |-1 |+1 |-1 |+1 |-1 |+1 |-1

+1 (-1 [+ (-2 [+ [-] [+ -7 [-2 [+ -2+ (-] [+ -] [+

+1(-1 |+ |-1 (-1 (+1 -1 |+1 (+#1 |-1 |+1 |-1 |-1 |+1 |-1 |+1

+1 (-2 [+ [-2 (-7 |4 -7 [+ [-2(+2 -2 0+2 1+ [-] [+ [-]

T[] -T2 [H [*L () [T+ [+ [ -1 [+ [*L -] -1 7]

F1[-] (1 [# [% [FL -] [T -2 [ [+ [-] [-] [-T[% [+1

T[] |-T [+ [T [+ [*#1 -] [*L [ [T [+ [-1 |4 [*L[-]

(-] [ [ [-] [-T ] [#1[-1 [+ [#1[-] [% [+1]-] |-1

Rademacher derived WAl sh functions in sequency order

Unli ke the Hadanmard derived Wal sh functions, which nust
be a power of two in length, the Radenmacher derived Wl sh
functions nust be a power of four in length. Not all of the
Rademacher Wal sh functions have an equal nunber of 1, j, -1,
and -j states so nore Hadamard Wal sh functions make suitable
denodul ati on functions.

The Radenmacher derived Walsh functions have a
characteristic that is simlar to tw | evel Wal sh functi ons.
The conpl ex vector product of any two functions results in
another function that is a nenber of the original set. The
sequency of the conplex vector product of any two functions
is the nod 4 sum of the sequencies of the two functions. The
sequency is expressed as a four state nunber having val ues
0, 1, 2, and 3 for each of the digits. Each of the digits of
the two nunbers are added wthout carry. The resulting
nunber is the sequency of the product. This characteristic




makes finding baseline denodul ators nuch easier than the
trial and error nethods required for the other sets.

The Results of Testing

A program was witten to find the maxi num nunber of
antennas that could be supported by a given set of
or t hogonal functi ons. M sequenci es (mseq.), Hadamar d
derived (HwWal) and Radamacher derived (R-Wal) \Walsh
functions were tested. A second programwas witten to test
only the Radamacher derived functions since they are nore
predictable and | arger arrays can be handled nore
efficiently. Both prograns produced the same results on the
smal l er arrays. The test results are conpared to our current
way of nodul ating the system (Wal) at Hat Creek.

St eps Wl m seq. H \Wal R- Wl

16 3 X 4 4

32 4 3 6 X

64 6 X 7 8

128 7 5 10 X

256 10 X 12 15

512 13 15 X

1024 17 22

Ant ennas supported for a given nunber of steps.

The clear winner is the set of Radamacher derived Wl sh
functions. Radamacher derived Walsh functions, however,
increase in steps by factor of four junps. Hadamard derived
Wal sh functions may have an advantage in situations where a
factor of two junp is adequate for the needs of the array.
The Hat Creek array at ten antennas could, for instance,
reduce its current 256 step switching sequence to 128 steps
and reduce its mninmum integration tine by a factor of two
by using a set of Hadamard derived WAl sh functions, whereas
a Radamacher derived set would require 256 steps.

Concl usi ons

Even the nost efficient set of functions is remarkably
wasteful . At 1024 steps the Radamacher derived functions can
take care of only 22 antennas or 231 baselines. Qut of 1024
functions only 231 are found to be suitable for baseline
denodul ati on. An ideal set of functions should be capabl e of
handling 45 antennas (990 baselines) with that nany steps.
The probl em becones worse when each antenna is fitted with
dual pol arization receivers. Since all of the cross products
of both polarizations nust be neasured, the problem
increases by a factor of four. An ideal set of functions



with 1024 steps would denodul ate the signals from only 23
antennas (253 baselines) in a dual polarization system

One of the purposes of swtching is to elimnate cross-
tal k between the antennas occurring fromthe antenna to the
point where the data is digitized. If this purpose is no
|l onger required then things beconme nmuch sinpler. Sinple
square waves could be used to elimnate DC and to separate
the sidebands. One way to elimnate the need for elaborate
denodul ation schenmes is to digitize the signal at the
antennas. Once the signal is digitized there is no |onger
any danger from cross talk. Another possibility is the use
of fiber-optic links fromthe antennas to the nmain buil ding.
An optical signal must, however, be turned into an
el ectrical one, at sonme point, in order for it to be
digitized. It is at this point that cross-talk becones a
danger.
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