A comparison of the ALMA OTF holography transmitter power to the power radiated at mm wavelengths by a human body

Darrel Emerson, 2006-03-18

The ALMA holography transmitter at the OTF radiates about 10 microwatts, into an antenna with a gain of 33 dBi. This radiation is confined to a very narrow bandwidth, of order 1 kHz or less. This radiated power is small compared to the mm-wave thermal radiation from a human body.

The following notes were written and calculated using Mathcad.

Some physical constants and formulae:

Speed of light, m/s	$c := 2.99792458 \cdot 10^8$
Planck constant, J.s	$h := 6.6260755 \cdot 10^{-34}$
Boltzmann constant, J/K	$k := 1.380658 \cdot 10^{-23}$
Stefan's constant, W/m^2/K^4	$\sigma := 5.67051 \cdot 10^{-8}$
Assumed radiating surface area of a human body, square meters: $A := 1$	
Assumed temperature of human body:	T=300 K
Holography frequency:	fh := 100 GHz

Transmitter antenna gain G := 33 dBi

Planck radiation law.

Watts per Hz at frequency f(Hz) and temperature T (K).

$$Wp(f,T) := \frac{2 \cdot A \cdot h \cdot f^{3}}{c^{2} \cdot \left(e^{h \cdot \frac{f}{k \cdot T}} - 1 \right)} \cdot \pi$$

Stefan's law, total power radiated integrated over all frequencies:

 $Ws(T) := \sigma \cdot A \cdot T^4$

Check:

Total Thermal Power radiated: Example of T := 30

Comparison Planck with Stefan's law. At temperature T=30, between 0 and 10^15 Hz:

Planck integration: $\int_{0}^{10^{15}} Wp(f,T) df = 0.04593 \text{ watts}$ Stefan's law: $\sigma \cdot A \cdot T^4 = 0.04593 \text{ watts}$

So the integration of Planck's law is getting the right answer. This validates the Mathcad Planck equation and integration.

QUESTION:

What is the 300 K thermal mm-wave power radiated over the spectrum covered by ALMA, from 31 GHz to 950 GHz?

Pthermal :=
$$\int_{31 \cdot 10^9}^{950 \cdot 10^9} Wp(f, 300) df$$
 Pthermal = 0.078 watts

Compare this to the 10*10-6 watts from the transmitter.

$$Ptx := 10 \cdot 10^{-6} \text{ watts} \qquad \frac{Pthermal}{Ptx} = 7.813 \times 10^{3}$$

If we apply the antenna gain of G= 33 dB to the transmitter power:

ratio :=
$$\frac{\text{Pthermal}}{\left(\frac{G}{\text{Ptx} \cdot 10^{10}}\right)}$$
 ratio = 3.916

So, even with the transmitter antenna beamed directly at,say, a fuel tank, a person standing at the base of the tower radiates mm-wave radiation ~4 times stronger than the holography transmitter.