Maxwell's Equations and Associated Laws in Various Forms

NameVector CalculusTensor AnalysisSpacetime Algebra
Lorenz gauge condition \(\nabla\cdot\mathbf{A}+\frac{1}{c^2}\frac{\partial\varphi}{\partial t}=0\) \(\partial_\mu A^\mu=0\) \(\square\cdot A=0\)
Electromagnetic potential
\(\square^2\mathbf{A}=\mu_0\mathbf{J}\)
\(\square^2\varphi=\rho/\varepsilon_0\)
\(\partial_\mu\partial^\mu A^\nu=\mu_0J^\nu\) \(\square^2 A=\mu_0J\)
Electromagnetic fields
\(\mathbf{E}=-\nabla\varphi-\frac{\partial\mathbf{A}}{\partial t}\)
\(\mathbf{B}=\nabla\times\mathbf{A}\)
\(F^{\mu\nu}=2\partial^{[\mu}A^{\nu]}\) \(F=\square\wedge A\)
Maxwell's equations
\(\nabla\cdot\mathbf{D}=\rho\)
\(\nabla\times\mathbf{H}-\frac{\partial\mathbf{D}}{\partial t}=\mathbf{J}\)
\(\nabla\cdot\mathbf{B}=0\)
\(\nabla\times\mathbf{E}+\frac{\partial\mathbf{B}}{\partial t}=0\)
\(\partial_\mu F^{\mu\nu}=\mu_0 J^\nu\)
\(\partial_{[\mu}F_{\nu\sigma]}=0\)
\(\square F=\mu_0J\)
Continuity equation \(\nabla\cdot\mathbf{J}+\frac{\partial\rho}{\partial t}=0\) \(\partial_\mu J^\mu=0\) \(\square\cdot J=0\)
Ohm's law \(\mathbf{J}=\sigma(\mathbf{E}+\mathbf{v}\times\mathbf{B})\cosh\zeta\) \(J^\mu=\sigma F^{\mu\nu}U_\nu\) \(J=\sigma F\cdot U\)

Definitions

Vectors

Tensors

Spacetime Algebra

For more information about the relativistic form and application of these equations, the reader is referred to my book, Relativistic Field Theory for Microwave Engineers :

Now available at BookBaby and Amazon.com.