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Outline
 General purpose computing on GPUs (GPGPU):  

History, motivations, device characteristics.

 How GPUs fit into radio astronomy instruments and 
signal processing pipelines.

 GPU programming basics:  The devices, progamming 
languages/tools, useful concepts.

 Examples of GPUs in action!

 Semi-detailed examples: Pulsar instrumentation.  (Yes, 
there will be code!)

 Comments from the audience?



  

Computing on GPUs - Motivations

(From NVIDIA CUDA Programming Guide)



  

Computing on GPUs - Motivations

(Barsdell et al 2010)



  

GPU capabilities

 Set of highly parallel (SIMD) “multiprocessors”.

 Best suited for parallel problems with high arithmetic 
intensity – roughly, # operations per sample (or per data 
transfer) should be in the 100s.
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GPUs in radio astronomy
 Most current digital instrument designs for radio 

astronomy incorporate elements of FPGAs, GPUs, and 
CPUs, each with different strengths/uses:

 FPGA – High data rate; small memory; simple algorithms; 
low power.  ADC interfaces; high-BW coarse filterbanks; 
packetization.  Still fairly hard to program!

 CPU – Low/moderate data rate; large memory; complex 
algorithms.  M&C code; file formatting; networking.  Easy 
to program. 

 GPU – Low/moderate data rate; moderate memory; 
complex algorithms; high parallel ops/sec.  High-res 
filterbank; coherent dedisp; correlator X-engine.



  

GPU design complexity



  

GPU programming tools 
 Pre-2006, OpenGL/etc used directly (hard!)

 NVIDIA's Compute Unified Device Architecture  
(CUDA)

 Provided free by NVIDIA.

 Programmed mainly via “C for CUDA” 

 Comes with compiler, dev kit, code samples, 
good documentation, libraries (FFT, BLAS, etc).

 First release Nov 2006, currently at v4.1

 Open Computing Language (OpenCL)

 Industry-supported open standard.

 Implementations exist for NVIDIA, AMD, Intel, 
Apple.

 First release Dec 2008, currently at v1.2



  

CUDA vs OpenCL
 CUDA advantages:

 More mature: Bigger 
userbase, codebase.

 Supported libraries: 
CUFFT, etc.

 New HW features 
supported quicker.

 Faster code on NVIDIA 
HW (maybe)?

 OpenCL advantages:

 Not vendor-specific.

 Code is (in principle) 
portable between 
different devices.

 Can be used on parallel 
CPU architectures also.

Bottom line:  Almost all existing astronomy GPU projects are 
CUDA-based.  OpenCL may be more “future-proof” but only if 
people start using it (chicken/egg)...



  

NVIDIA GPU devices
 Each line of GPU chips comes packaged as “gaming” 

(GeForce/GTX) and “computing” (Tesla) boards.

 In Fermi arch, compute-specific boards have fast 
double-precision floating point enabled.

 “Gaming” boards are entirely appropriate for many of 
our DSP applications (and cheaper!).

(From NVIDIA CUDA Programming Guide)



  

CUDA terminology
 “device” - the GPU board.

 “host” - the rest of the computer system (CPUs, 
memory, etc).

 “kernel” - parallel code that runs on the GPU.

 “thread” - unit of parallel instructions/data within a 
kernel.

 “stream” - a series of kernels, data transfers, that 
happen sequentially. 



  

CUDA thread hierarchy
 A kernel is executed as 

a “grid” of independent 
thread blocks.

 Each thread block runs 
on a single 
multiprocessor unit, 
and should contain at 
least 32 threads.



  

CUDA memory hierarchy

Host

Main (CPU) system RAM

PCIe
bus

“On-chip” memory

Fast
Small (~16 kB / 
thread block)

“Off-chip”

Slow
Large (~GB)



  

Memory management
 Optimizing memory access has a huge effect on GPU 

code efficiency – a single global mem operation takes 
several hundred clock cycles.

 Requires much more thought than typical for CPU-
based programming.

 Global GPU memory read/writes should be:

 Minimized

 “Coalesced”

Global memory

Threads



  

Existing GPU instruments
 Pulsar instruments (coherent dedisp)

 GUPPI (Green Bank)

 BON (Nancay) 

 CASPSR (Parkes)

 Transient detectors

 ARTEMIS (LOFAR)

 Spectrometers

 VEGAS (Green Bank)

 Array correlators

 PAPER / LEDA

 MWA

 … and probably many more! 



  

GUPPI pulsar backend
800 MHz total BW coherent dedispersion, 9-node GPU cluster

(GTX 285)



  

LEDA / PAPER correlator

<512-input correlators.

100 MHz BW.

F-engine in 16 roach 
boards, X-engine in 24 
GPUs.

Coded in CUDA, based 
on work at CfA.

PAPER version to deploy 
summer 2012.

(Thanks Dan Werthimer 
and Aaron Parsons!)



  

VEGAS spectrometer for the GBT
 NRAO/Berkeley project to replace current (old) GBT 

Spectrometer.

 More ADC bits, more BW/beams, more flexibility.

 Digitally tunable sub-bands in Roach boards, high-res 
spectra in GPUs.

 Based on GUPPI software architecture (“guppi_daq”).

(fig: Simon Scott)



  

ARTEMIS transient search

 Working prototype for SKA non-image processing.

 Real-time search for radio pulses using CPU/GPU.

 Dedispersion over 4000 DMs in real time in GPU.

 150 MHz LOFAR station beam is 2.5° FWHM.

 Pilot survey 1: 6-8 beams, circumpolar targets

 Pilot survey 2: 6 beams fixed on meridian (8-28° dec)

 Each beam is 800 Mb/s (12.5 MHz) processed by 1 
node = 12 Xeon cores + M2050/GTX

Receive udp 
stream

Polyphase 
filter

Raw to 
Stokes

RFI 
removal

Dedispersion output

Thanks Aris Karastergiou! 
(aris@astro.ok.ca.uk)



  

ARTEMIS transient search

Dispersion measure pc/cm3

Time (s)

Crab HAMSAT

Pipeline diagnostic plot from drift survey – daily summary from one of six beams

Time (s)

Crab



  

Cyclic spectroscopy for pulsars
 Allows “de-scattering” of ISM response.

 Much more computation than coherent dedisp.

 See Glenn Jones' talk tomorrow!

(Demorest 2011)



  

Cyclic spectroscopy for pulsars
 Allows “de-scattering” of ISM response.

 Much more computation than coherent dedisp.

 See Glenn Jones' talk tomorrow!

(Demorest 2011)



  

Instrumentation for pulsar timing - motivation



  

Design study:  Pulsar instrumentation
 Want as much BW as possible (currently ~1 GHz BW at 

L-band); split into ~MHz channels for ~us time resoln.

 Need to do 100 MHz total BW per GPU.

 In GUPPI, single-channel data comes into GPU, then:

 Unpack (8-bit to float)

 Dedisperse (FFT-mult-IFFT; ~10k to 1M-points)

 “Fold” modulo current pulse period:



  

First steps:  FFT
CUFFT interface very similar to FFTW.  
Plan:

Exec:

Very easy 
introduction to using 
GPU/CUDA!

(Note: plot shows 
very old result!)

(PBD; 8/2007)



  

A simple kernel:  8-bit unpack

(Directly from guppi_daq code; dedisperse_gpu.cu)



  

Non-trivial: Pulse period folding

 The easy serial (CPU) way:

φ(t)
time

0     1     2    ... pha
se

0

N

(figure: Ryan Lynch)

Note: Folding is pretty low intensity (~5 
ops/sample).  But the data is on the GPU 
already, so we want to reduce it there..



  

Folding, first GPU attempt:
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GPU folding, a better way:
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Each thread handles one pulse phase bin, pulling 
appropriate samples from input array.

Folded data accumulates in thread-local memory, resulting 
in less global mem writes = much faster!



  

GPU folding code
(guppi_ daq/fold _gpu.c u)



  

Putting it all together
From recent GBT observation of B1937+21 at 820 MHz:

Goal was 100 MHz BW per GPU (10 ns/samp).

Chirp length (proportional to DM)



  

The end!
 Questions or comments are of course welcome!  Please 

share your own GPU experiences.

 Useful links:

 http://developer.nvidia.com/cuda-downloads

 http://www.khronos.org/opencl

 http://github.com/demorest/guppi_daq

 http://dspsr.sourceforge.net

http://developer.nvidia.com/cuda-downloads
http://www.khronos.org/opencl
http://github.com/demorest/guppi_daq
http://dspsr.sourceforge.net/
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