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Outline

¢ General purpose computing on GPUs (GPGPU):
History, motivations, device characteristics.

¢+ How GPUs fit into radio astronomy instruments and
signal processing pipelines.

¢+ GPU programming basics: The devices, progamming
languages/tools, useful concepts.

+ Examples of GPUs in action!

¢+ Semi-detailed examples: Pulsar instrumentation. (Yes,
there will be code!)

¢ Comments from the audience?



Computing on GPUs - Motivations
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(From NVIDIA CUDA Programming Guide)



Computing on GPUs - Motivations
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Figure 1. Clock-rate versus core-count phase space of Moore’s law binned
every 2 yr for CPUs (circles) and GPUs (diamonds). There 1s a general trend
for performance to increase from bottom left to top right.

(Barsdell et al 2010)



GPU capabilities
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CPU GPU

¢ Set of highly parallel (SIMD) “multiprocessors”.

+ Best suited for parallel problems with high arithmetic
intensity — roughly, # operations per sample (or per data
transfer) should be in the 100s.



GPUs in radio astronomy

¢ Most current digital instrument designs for radio
astronomy incorporate elements of FPGAs, GPUs, and
CPUs, each with different strengths/uses:

¢+ FPGA - High data rate; small memory; simple algorithms;
low power. ADC interfaces; high-BW coarse filterbanks;
packetization. Still fairly hard to program!

¢+ CPU - Low/moderate data rate; large memory; complex
algorithms. M&C code; file formatting; networking. Easy
to program.

¢+ GPU - Low/moderate data rate; moderate memory;
complex algorithms; high parallel ops/sec. High-res
filterbank; coherent dedisp; correlator X-engine.



GPU design complexity
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GPU programming tools
¢ Pre-2006, OpenGL/etc used directly (hard!)

+ NVIDIA's Compute Unified Device Architecture
(CUDA)

« Provided free by NVIDIA. NVIDIA.
¢ Programmed mainly via “C for CUDA"

+ Comes with compiler, dev kit, code samples,
good documentation, libraries (FFT, BLAS, etc).

+ First release Nov 2006, currently at v4.1

¢ Open Computing Language (OpenCL) €A
& S
¢ |Industry-supported open standard. s /‘
+ Implementations exist for NVIDIA, AMD, Intel,
Apple. OpenCL

+ First release Dec 2008, currently at v1.2



CUDA vs OpenCL
+ CUDA advantages: + OpenCL advantages:

+ More mature: Bigger + Not vendor-specific.

userbase, codebase. » Code is (in principle)

¢ Supported libraries: portable between
CUFFT, etc. different devices.

+ New HW features ¢ Can be used on parallel
supported quicker. CPU architectures also.

+ Faster code on NVIDIA
HW (maybe)?

Bottom line: Almost all existing astronomy GPU projects are
CUDA-based. OpenCL may be more “future-proof” but only if
people start using it (chicken/egg)...



NVIDIA GPU devices

+ Each line of GPU chips comes packaged as “gaming’
(GeForce/GTX) and “computing” (Tesla) boards.

J

¢ In Fermi arch, compute-specific boards have fast
double-precision floating point enabled.

+ “Gaming” boards are entirely appropriate for many of
our DSP applications (and cheaper!).

Fermi Architecture GeForce 500 Series
(Compute capabilities 2.x) Quadro Fermi Series Tesla 20 Series

. GeForce 200 Series Quadro FX Series
Tesla Architecture (- gogqrced Series QuadroPlex Series | Tesla 10 Series
(Compute capabilities 1.x) GeForce 8 Series Quadro NVS Series

; ﬂ —_ <
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(From NVIDIA CUDA Programming Guide)
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CUDA terminology

¢ “device” - the GPU board.

¢ “host” - the rest of the computer system (CPUs,
memory, etc).

¢ “kernel” - parallel code that runs on the GPU.

¢ “thread” - unit of parallel instructions/data within a
kernel.

¢ “stream’” - a series of kernels, data transfers, that
happen sequentially.



CUDA thread hierarchy

¢ A kernel is executed as
a “grid” of independent
thread blocks.

¢ Each thread block runs
on a single
multiprocessor unit,
and should contain at
least 32 threads.
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CUDA memory hierarchy

Device GPU

Multiprocessor

Host

Main (CPU) system RAM

Multiprocessor

To Host
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Memory management

+ Optimizing memory access has a huge effect on GPU
code efficiency — a single global mem operation takes
several hundred clock cycles.

+ Requires much more thought than typical for CPU-
based programming.

¢ Global GPU memory read/writes should be:
¢+ Minimized
+ “Coalesced”

Global memory

PPN T Threads



Existing GPU instruments

¢ Pulsar instruments (coherent dedisp)
+ GUPPI (Green Bank)
+ BON (Nancay)
¢ CASPSR (Parkes)
+ Transient detectors
+ ARTEMIS (LOFAR)
¢ Spectrometers
+ VEGAS (Green Bank)
+ Array correlators
+ PAPER / LEDA
+ MWA
¢ ... and probably many more!




GUPPI pulsar backend

800 MHz total BW coherent dedispersion, 9-node GPU cluster

(GTX 285)
GUPPI architecture:
~1 MHz PFB in FPGASs

Coherent dedisp in GPUs
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LEDA / PAPER correlator

<512-input correlators.

100 MHz BW.

CPU/GPU
F-engine in 16 roach ROACH Il
boards, X-engine in 24
GPUs.

Coded in CUDA, based
on work at CfA.

ROACH II
F-engine 15 CPU/GPU
PAPER version to deploy X-engine 24
summer 2012. <

~ Input 511

(Thanks Dan Werthimer
and Aaron Parsons!)



VEGAS spectrometer for the GBT

+ NRAO/Berkeley project to replace current (old) GBT
Spectrometer.

¢+ More ADC bits, more BW/beams, more flexibility.

+ Digitally tunable sub-bands in Roach boards, high-res
spectra in GPUs.

+ Based on GUPPI software architecture (“guppi_daq”).

GPU Thread

Metwork Thread

(fig: Simon Scott)




ARTEMIS transient search

Thanks Aris Karastergiou!
(aris@astro.ok.ca.uk)

+ \Working prototype for SKA non-image processing.

¢ Real-time search for radio pulses using CPU/GPU.

¢ Dedispersion over 4000 DMs in real time in GPU.

+ 150 MHz LOFAR station beam is 2.5° FWHM.

+ Pilot survey 1: 6-8 beams, circumpolar targets

* Pilot survey 2: 6 beams fixed on meridian (8-28° dec)

¢ Each beam is 800 Mb/s (12.5 MHz) processed by 1
node = 12 Xeon cores + M2050/GTX



NI

ARTEMIS transient search
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Cyclic spectroscopy for pulsars

+ Allows “de-scattering” of ISM response.

¢+ Much more computation than coherent dedisp.

¢ See Glenn Jones' talk tomorrow!
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Cyclic spectroscopy for pulsars
+ Allows “de-scattering” of ISM response.
¢+ Much more computation than coherent dedisp.

¢ See Glenn Jones' talk tomorrow!
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Instrumentation for pulsar timing - motivation
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Design study: Pulsar instrumentation

+ Want as much BW as possible (currently ~1 GHz BW at
L-band); split into ~MHz channels for ~us time resoln.

+ Need to do 100 MHz total BW per GPU.

+ |In GUPPI, single-channel data comes into GPU, then:

+ Unpack (8-bit to float)
¢ Dedisperse (FFT-mult-IFFT; ~10k to 1M-points)
¢ “Fold” modulo current pulse period:

1500 MHz, GBT/GUPPI

eeeeeeee

Flux

sssssssssssssssss



First steps: FFT

CUFFT interface very similar to FFTW.

Plan: // Plan EFT

cufftResult fft rv =
cufftPlanld(&s->plan, s->fft len, CUFFT C2C, 2*s->nfft per block);

Exec: /* Forward FFT */
fft rv = cufftExecC2C(s->plan, s->databuf® gpu, s->databuf@ gpu,
CUFFT_FORWARD) ;
cudaEventRecord(t[it], ©0); it++;

100 |

Very easy | | S
iIntroduction to using |
GPU/CUDA!

(Note: plot shows
very old result!)

1024 4096 16384 65536 262144 1048576 4194304 16777216

FFT Length (PBD; 8/2007)



A simple kernel: 8-bit unpack

/* CUDA kernel to convert bytes to floats. Also splits incoming
* data into two polarizations (assuming polns are interleaved
* in the raw data).
*/
_global  void byte to float 2pol complex(
[r51gned short *in, float2 *outx, float2 *outy,
size t n) {
const int nt = blockDim.x * gridDim.x;
const int tId = blockIdx.x * blockDim.x + threadIdx.x;
char4 *in 8bit = (char4 *)in;
for (int i=tId; i<n; i+=nt) {
outx[i].x ntzflﬂdt rn(in 8bit[1i].x);
outx[il.y = int2float rn(in _8bit[i].y);
outy[i].x = int2float rn(in 8bit[i].z);
outy[i]l.y = int2float rn(in 8bit[i].w);

/* Convert to floating point */
E@te_to_float_zpol_cﬂmplex{{alﬁ,12833}{{unsigned short *)s->overlap gpu,

s->databuf@® gpu, s->databufl gpu, npts tot);
cudaEventRecord(t[it], 0); it++;

(Directly from guppi_daq code; dedisperse_gpu.cu)



Non-trivial: Pulse period folding
(figure: Ryan Lynch)
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¢ The easy serial (CPU) way:
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Note: Folding is pretty low intensity (~5
ops/sample). But the data is on the GPU N

already, so we want to reduce it there..



Folding, first GPU attempt:
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GPU folding, a better way:

5
I

aseyd

time

t((pN :> N

Each thread handles one pulse phase bin, pulling
appropriate samples from input array.

Folded data accumulates in thread-local memory, resulting
in less global mem writes = much faster!



GPU foldinc

/// Loop over number of pulse periods in data block
fnr (int iturn=0; iturn<nturn; iturn++) {

// Determine range of samples needed for this bin, turn
int samp® = samp bin*((double)bin lo-bin@+(double)iturn*nbin)+0.5;
int sampl = samp bin*((double)bin lo-bin®+(double)iturn*nbin+1)+0.5;

// Range checks

if (samp0<@) { samp0=0; }

if (sampl<@) { sampl=0; }

if (samp@>nvalid) { samp@=nvalid; }
if (sampl>nvalid) { sampl=nvalid; }

// Read in and add samples

for (int isamp=samp@; isamp<sampl; isamp++) {
float2 po = ptrO[isamp];
float2 pl = ptrl[isamp];
folddata.x += p0O.x*p0.x e
folddata.y += pl.x*pl.x e
folddata.z += p0O.x*pl.x Y
folddata.w += pO.x*pl.y : X
foldcount++;

(no'ndb pjoybep 1ddnb)

}

// Copy results into global mem

const unsigned prof ﬂffset ifft * nbin;
foldtmp[prof offset + folddata.x;
foldtmp[prof offset + folddata.y;
foldtmp[prof offset + folddata.z;
foldtmp[prof offset + folddata.w;




Putting it all together

From recent GBT observation of B1937+21 at 820 MHz:

Total time
Total2 time =
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158.9 s (4.1900 ns/samp)
158.7 s (4.1846 ns/samp)

.975%
.35%
7.62%
. 48%

. 22%
).96%
10.59%
0.22%
0.00%
0.46%

transfer to gpu
overlap
bit to float
fft

xmult

fold mem

fold blocks

fold combine
downsample
transfer to host
Closing file '/data/gpu/partial/gpul/guppi 55919 B1937+21 0026 0001.fits'’
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Chirp length (proportional to DM)



The end!

¢ Questions or comments are of course welcome! Please
share your own GPU experiences.

¢ Useful links:

+ http://developer.nvidia.com/cuda-downloads
¢ http://www.khronos.org/opencl
+ http://github.com/demorest/guppi_daq

¢ http://dspsr.sourceforge.net


http://developer.nvidia.com/cuda-downloads
http://www.khronos.org/opencl
http://github.com/demorest/guppi_daq
http://dspsr.sourceforge.net/
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