Graphical Processing Units (GPUs)
in Radio Astronom

 —

‘ﬁ:?ﬁfa =,, AR —

.
1T WEER

Paul Demorest (NRAO)

Outline

¢ General purpose computing on GPUs (GPGPU):
History, motivations, device characteristics.

¢+ How GPUs fit into radio astronomy instruments and
signal processing pipelines.

¢+ GPU programming basics: The devices, progamming
languages/tools, useful concepts.

+ Examples of GPUs in action!

¢+ Semi-detailed examples: Pulsar instrumentation. (Yes,
there will be code!)

¢ Comments from the audience?

Computing on GPUs - Motivations

Theoretical
GFLOP/s
1750
NVIDIA GPU Single Precision
1500 —+—NVIDIA GPU Double Predision
=p=|ntel CPU Single Precsion
==t |(tel CPU Double Precision
1250
1000
750
Tesla C2050
500
250 Westmere
woodcrestTeslaCH}ﬁD
0 Har
: pertown
Sep-01 Penti 503 Jun-04 Oct-05 Mar-07 Jul-08 Dec-09

(From NVIDIA CUDA Programming Guide)

Computing on GPUs - Motivations

| I I LI II] I 1 LI II] I] LN
®
100 CPUs 4 08/09 -
[¢ GPUs ¢ 06/07]
* i]
m L -
| -
O L -
O
| - — -
O
D
O
o 10F A E
O [; .
| - | l |
o i ' i
© - | ©08/09 -
. i | i
o + ®@06/07
Z ! _ , |
Time
1 o0] °] ® ©® 004/05 =
- 90/91 92/93 94/95 96/97 98/99 00/0102/03 :
[1 1 [l Ll 11 II 1 1 1 L1 11 II | 1] L] 11 J_
0.01 0.1 1 10

Clock rate (GHz)

Figure 1. Clock-rate versus core-count phase space of Moore’s law binned
every 2 yr for CPUs (circles) and GPUs (diamonds). There 1s a general trend
for performance to increase from bottom left to top right.

(Barsdell et al 2010)

GPU capabilities

Control ALU ALU

ALU ALU

(aping Bulwweiboid YaND VIAIAN woid)

CPU GPU

¢ Set of highly parallel (SIMD) “multiprocessors”.

+ Best suited for parallel problems with high arithmetic
intensity — roughly, # operations per sample (or per data
transfer) should be in the 100s.

GPUs in radio astronomy

¢ Most current digital instrument designs for radio
astronomy incorporate elements of FPGAs, GPUs, and
CPUs, each with different strengths/uses:

¢+ FPGA - High data rate; small memory; simple algorithms;
low power. ADC interfaces; high-BW coarse filterbanks;
packetization. Still fairly hard to program!

¢+ CPU - Low/moderate data rate; large memory; complex
algorithms. M&C code; file formatting; networking. Easy
to program.

¢+ GPU - Low/moderate data rate; moderate memory;
complex algorithms; high parallel ops/sec. High-res
filterbank; coherent dedisp; correlator X-engine.

GPU design complexity

Performance

A
Goal
O @ KC
Rookie Experienced Genius
@ rrcA
@ CPU (N)
) - @ GPGRU

Development Cost & Complexity

GPU programming tools
¢ Pre-2006, OpenGL/etc used directly (hard!)

+ NVIDIA's Compute Unified Device Architecture
(CUDA)

« Provided free by NVIDIA. NVIDIA.
¢ Programmed mainly via “C for CUDA"

+ Comes with compiler, dev kit, code samples,
good documentation, libraries (FFT, BLAS, etc).

+ First release Nov 2006, currently at v4.1

¢ Open Computing Language (OpenCL) €A
& S
¢ |Industry-supported open standard. s /‘
+ Implementations exist for NVIDIA, AMD, Intel,
Apple. OpenCL

+ First release Dec 2008, currently at v1.2

CUDA vs OpenCL
+ CUDA advantages: + OpenCL advantages:

+ More mature: Bigger + Not vendor-specific.

userbase, codebase. » Code is (in principle)

¢ Supported libraries: portable between
CUFFT, etc. different devices.

+ New HW features ¢ Can be used on parallel
supported quicker. CPU architectures also.

+ Faster code on NVIDIA
HW (maybe)?

Bottom line: Almost all existing astronomy GPU projects are
CUDA-based. OpenCL may be more “future-proof” but only if
people start using it (chicken/egg)...

NVIDIA GPU devices

+ Each line of GPU chips comes packaged as “gaming’
(GeForce/GTX) and “computing” (Tesla) boards.

J

¢ In Fermi arch, compute-specific boards have fast
double-precision floating point enabled.

+ “Gaming” boards are entirely appropriate for many of
our DSP applications (and cheaper!).

Fermi Architecture GeForce 500 Series
(Compute capabilities 2.x) Quadro Fermi Series Tesla 20 Series

. GeForce 200 Series Quadro FX Series
Tesla Architecture (- gogqrced Series QuadroPlex Series | Tesla 10 Series
(Compute capabilities 1.x) GeForce 8 Series Quadro NVS Series

; ﬂ —_ <

-l B \
I Professional
- Graphics

(From NVIDIA CUDA Programming Guide)

V. -

CUDA terminology

¢ “device” - the GPU board.

¢ “host” - the rest of the computer system (CPUs,
memory, etc).

¢ “kernel” - parallel code that runs on the GPU.

¢ “thread” - unit of parallel instructions/data within a
kernel.

¢ “stream’” - a series of kernels, data transfers, that
happen sequentially.

CUDA thread hierarchy

¢ A kernel is executed as
a “grid” of independent
thread blocks.

¢ Each thread block runs
on a single
multiprocessor unit,
and should contain at
least 32 threads.

Grid

Block (0, D)

Block (1, 0)

Block (2, 0)

Block (0, 1)~

Block (1, 1)

“Block (2, 1)

Block (1, 1)

CUDA memory hierarchy

Device GPU

Multiprocessor

Host

Main (CPU) system RAM

Multiprocessor

To Host

PCle
bus

Multiprocessor
Registers
Shared Memory

“Off-chip” “On-chip” memory
Slow Fast
Large (~GB) Small (~16 kB /

thread block)

Memory management

+ Optimizing memory access has a huge effect on GPU
code efficiency — a single global mem operation takes
several hundred clock cycles.

+ Requires much more thought than typical for CPU-
based programming.

¢ Global GPU memory read/writes should be:
¢+ Minimized
+ “Coalesced”

Global memory

PPN T Threads

Existing GPU instruments

¢ Pulsar instruments (coherent dedisp)
+ GUPPI (Green Bank)
+ BON (Nancay)
¢ CASPSR (Parkes)
+ Transient detectors
+ ARTEMIS (LOFAR)
¢ Spectrometers
+ VEGAS (Green Bank)
+ Array correlators
+ PAPER / LEDA
+ MWA
¢ ... and probably many more!

GUPPI pulsar backend

800 MHz total BW coherent dedispersion, 9-node GPU cluster

(GTX 285)
GUPPI architecture:
~1 MHz PFB in FPGASs

Coherent dedisp in GPUs

A

(T

%10 Ge
switch:
24 Gbl/s

441"
R o
m -
" o
= :1‘ 1_::
I.' .I-';-".
' :EJE';I-
-t

LEDA / PAPER correlator

<512-input correlators.

100 MHz BW.

CPU/GPU
F-engine in 16 roach ROACH Il
boards, X-engine in 24
GPUs.

Coded in CUDA, based
on work at CfA.

ROACH II
F-engine 15 CPU/GPU
PAPER version to deploy X-engine 24
summer 2012. <

~ Input 511

(Thanks Dan Werthimer
and Aaron Parsons!)

VEGAS spectrometer for the GBT

+ NRAO/Berkeley project to replace current (old) GBT
Spectrometer.

¢+ More ADC bits, more BW/beams, more flexibility.

+ Digitally tunable sub-bands in Roach boards, high-res
spectra in GPUs.

+ Based on GUPPI software architecture (“guppi_daq”).

GPU Thread

Metwork Thread

(fig: Simon Scott)

ARTEMIS transient search

Thanks Aris Karastergiou!
(aris@astro.ok.ca.uk)

+ \Working prototype for SKA non-image processing.

¢ Real-time search for radio pulses using CPU/GPU.

¢ Dedispersion over 4000 DMs in real time in GPU.

+ 150 MHz LOFAR station beam is 2.5° FWHM.

+ Pilot survey 1: 6-8 beams, circumpolar targets

* Pilot survey 2: 6 beams fixed on meridian (8-28° dec)

¢ Each beam is 800 Mb/s (12.5 MHz) processed by 1
node = 12 Xeon cores + M2050/GTX

NI

ARTEMIS transient search

50

1CIIO 15;0
. . DM
Dispersion measure pc/cm3

Cyclic spectroscopy for pulsars

+ Allows “de-scattering” of ISM response.

¢+ Much more computation than coherent dedisp.

¢ See Glenn Jones' talk tomorrow!

Radio Frequency (MHz)

429 ————

428.95 [R o o P

428.85 e :
428.8 T
42875 B

Time (ms)
08 085 09 085 1 105 11 115 1.2

0.5 055 0.6 0.65 07 0.75 08
Pulse Phase (turns)

- 0.2

- -02

-04

429

428.95
N
T

= 4289
o
|
a
g
)
LL

o 42885
®
(i

428.8

42875

Time (ms)

08 085 09 095 1 1058 11 115 1.2

0.8

0.6

L 04

-- 0.2

— -0.2

0.5

0.55

0.6

0.65

0.7 0.75 0.8

Pulse Phase (turns)

(Demorest 2011)

Cyclic spectroscopy for pulsars
+ Allows “de-scattering” of ISM response.
¢+ Much more computation than coherent dedisp.

¢ See Glenn Jones' talk tomorrow!

Time (ms)
-0.6 -0.4 -0.2 0 0.2 0.4 0.6 i)
0.8 085 049 o F T T T T T T T] N5 11 115 1.2
-10 -
-20 -
-30 -
-40 o
-50
-60 li
-?0 -
428.9 -80

429

428.95

Intensity (peak, dB)

N L4 0.4

i
1
_ 0.8 - ;’ [
428 .85 , E. H
| |
|

Radio Frequency (MHz)

0.6 -= 02

428.8

Intensity (peak)

04l I {0 il
o2t | I .l -
!I| \ -II

428.75

i N L g2

! ' ! ' "urns)
0 0.2 0.4 0.6 0.8 1

Pulse Phase (turns) (DemoreSt 201 1)

Instrumentation for pulsar timing - motivation

-10 ‘ ‘ I : I ‘ ‘ : ! : ! : !
N\ : | PSR B1855+09 : :

NAN@GraV currentf
NANOGrav 2015

PTA 2020

-12

M .
-16

-18

Characteristic strain, logg(hc)

-20

-22

Freguency, logig(Hz)

SQM1:

Double NS Systems

Mass [M]

Nucleon§ ° Strange Ququ Matter
7 8 9 10 11 12 13 14 15

0.0

Design study: Pulsar instrumentation

+ Want as much BW as possible (currently ~1 GHz BW at
L-band); split into ~MHz channels for ~us time resoln.

+ Need to do 100 MHz total BW per GPU.

+ |In GUPPI, single-channel data comes into GPU, then:

+ Unpack (8-bit to float)
¢ Dedisperse (FFT-mult-IFFT; ~10k to 1M-points)
¢ “Fold” modulo current pulse period:

1500 MHz, GBT/GUPPI

eeeeeeee

Flux

sssssssssssssssss

First steps: FFT

CUFFT interface very similar to FFTW.

Plan: // Plan EFT

cufftResult fft rv =
cufftPlanld(&s->plan, s->fft len, CUFFT C2C, 2*s->nfft per block);

Exec: /* Forward FFT */
fft rv = cufftExecC2C(s->plan, s->databuf® gpu, s->databuf@ gpu,
CUFFT_FORWARD) ;
cudaEventRecord(t[it], ©0); it++;

100 |

Very easy | | S
iIntroduction to using |
GPU/CUDA!

(Note: plot shows
very old result!)

1024 4096 16384 65536 262144 1048576 4194304 16777216

FFT Length (PBD; 8/2007)

A simple kernel: 8-bit unpack

/* CUDA kernel to convert bytes to floats. Also splits incoming
* data into two polarizations (assuming polns are interleaved
* in the raw data).
*/
_global void byte to float 2pol complex(
[r51gned short *in, float2 *outx, float2 *outy,
size t n) {
const int nt = blockDim.x * gridDim.x;
const int tId = blockIdx.x * blockDim.x + threadIdx.x;
char4 *in 8bit = (char4 *)in;
for (int i=tId; i<n; i+=nt) {
outx[i].x ntzflﬂdt rn(in 8bit[1i].x);
outx[il.y = int2float rn(in _8bit[i].y);
outy[i].x = int2float rn(in 8bit[i].z);
outy[i]l.y = int2float rn(in 8bit[i].w);

/* Convert to floating point */
E@te_to_float_zpol_cﬂmplex{{alﬁ,12833}{{unsigned short *)s->overlap gpu,

s->databuf@® gpu, s->databufl gpu, npts tot);
cudaEventRecord(t[it], 0); it++;

(Directly from guppi_daq code; dedisperse_gpu.cu)

Non-trivial: Pulse period folding
(figure: Ryan Lynch)

vl
— —

| | | | | | | | | |
lsec 2sec 3sec 4dsec Ssec Bsec 7sec Bsec UOsec l0sec
e ranay vy

¢ The easy serial (CPU) way:

0
@ D
0| 1|2].) o(t) -
time \ Y %
Note: Folding is pretty low intensity (~5
ops/sample). But the data is on the GPU N

already, so we want to reduce it there..

Folding, first GPU attempt:

aseyd

Time chunk 0) %

oseyd

eseqb

Time chunk 1) %

aseyd

Time chunk N ﬁ %

GPU folding, a better way:

5
I

aseyd

time

t((pN :> N

Each thread handles one pulse phase bin, pulling
appropriate samples from input array.

Folded data accumulates in thread-local memory, resulting
in less global mem writes = much faster!

GPU foldinc

/// Loop over number of pulse periods in data block
fnr (int iturn=0; iturn<nturn; iturn++) {

// Determine range of samples needed for this bin, turn
int samp® = samp bin*((double)bin lo-bin@+(double)iturn*nbin)+0.5;
int sampl = samp bin*((double)bin lo-bin®+(double)iturn*nbin+1)+0.5;

// Range checks

if (samp0<@) { samp0=0; }

if (sampl<@) { sampl=0; }

if (samp@>nvalid) { samp@=nvalid; }
if (sampl>nvalid) { sampl=nvalid; }

// Read in and add samples

for (int isamp=samp@; isamp<sampl; isamp++) {
float2 po = ptrO[isamp];
float2 pl = ptrl[isamp];
folddata.x += p0O.x*p0.x e
folddata.y += pl.x*pl.x e
folddata.z += p0O.x*pl.x Y
folddata.w += pO.x*pl.y : X
foldcount++;

(no'ndb pjoybep 1ddnb)

}

// Copy results into global mem

const unsigned prof ﬂffset ifft * nbin;
foldtmp[prof offset + folddata.x;
foldtmp[prof offset + folddata.y;
foldtmp[prof offset + folddata.z;
foldtmp[prof offset + folddata.w;

Putting it all together

From recent GBT observation of B1937+21 at 820 MHz:

Total time
Total2 time =

0.669
0.099
0.319
2.199
0.386
0.040
0.444
0.009
0.000
0.019

140 =

130

120

110

100

GPU BW (MHz)

90

80

ns
ns
ns
ns
n
|
.
)
n
ns

158.9 s (4.1900 ns/samp)
158.7 s (4.1846 ns/samp)

.975%
.35%
7.62%
. 48%

. 22%
).96%
10.59%
0.22%
0.00%
0.46%

transfer to gpu
overlap
bit to float
fft

xmult

fold mem

fold blocks

fold combine
downsample
transfer to host
Closing file '/data/gpu/partial/gpul/guppi 55919 B1937+21 0026 0001.fits'’

2048

4096

8192 16384

32768

Chirp length (proportional to DM)

The end!

¢ Questions or comments are of course welcome! Please
share your own GPU experiences.

¢ Useful links:

+ http://developer.nvidia.com/cuda-downloads
¢ http://www.khronos.org/opencl
+ http://github.com/demorest/guppi_daq

¢ http://dspsr.sourceforge.net

http://developer.nvidia.com/cuda-downloads
http://www.khronos.org/opencl
http://github.com/demorest/guppi_daq
http://dspsr.sourceforge.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

