

Graphical Processing Units (GPUs)
in Radio Astronomy

Paul Demorest (NRAO)

Outline
 General purpose computing on GPUs (GPGPU):

History, motivations, device characteristics.

 How GPUs fit into radio astronomy instruments and
signal processing pipelines.

 GPU programming basics: The devices, progamming
languages/tools, useful concepts.

 Examples of GPUs in action!

 Semi-detailed examples: Pulsar instrumentation. (Yes,
there will be code!)

 Comments from the audience?

Computing on GPUs - Motivations

(From NVIDIA CUDA Programming Guide)

Computing on GPUs - Motivations

(Barsdell et al 2010)

GPU capabilities

 Set of highly parallel (SIMD) “multiprocessors”.

 Best suited for parallel problems with high arithmetic
intensity – roughly, # operations per sample (or per data
transfer) should be in the 100s.

(F
rom

 N
V

ID
IA

 C
U

D
A

 P
ro gram

m
i ng G

uid e)

GPUs in radio astronomy
 Most current digital instrument designs for radio

astronomy incorporate elements of FPGAs, GPUs, and
CPUs, each with different strengths/uses:

 FPGA – High data rate; small memory; simple algorithms;
low power. ADC interfaces; high-BW coarse filterbanks;
packetization. Still fairly hard to program!

 CPU – Low/moderate data rate; large memory; complex
algorithms. M&C code; file formatting; networking. Easy
to program.

 GPU – Low/moderate data rate; moderate memory;
complex algorithms; high parallel ops/sec. High-res
filterbank; coherent dedisp; correlator X-engine.

GPU design complexity

GPU programming tools
 Pre-2006, OpenGL/etc used directly (hard!)

 NVIDIA's Compute Unified Device Architecture
(CUDA)

 Provided free by NVIDIA.

 Programmed mainly via “C for CUDA”

 Comes with compiler, dev kit, code samples,
good documentation, libraries (FFT, BLAS, etc).

 First release Nov 2006, currently at v4.1

 Open Computing Language (OpenCL)

 Industry-supported open standard.

 Implementations exist for NVIDIA, AMD, Intel,
Apple.

 First release Dec 2008, currently at v1.2

CUDA vs OpenCL
 CUDA advantages:

 More mature: Bigger
userbase, codebase.

 Supported libraries:
CUFFT, etc.

 New HW features
supported quicker.

 Faster code on NVIDIA
HW (maybe)?

 OpenCL advantages:

 Not vendor-specific.

 Code is (in principle)
portable between
different devices.

 Can be used on parallel
CPU architectures also.

Bottom line: Almost all existing astronomy GPU projects are
CUDA-based. OpenCL may be more “future-proof” but only if
people start using it (chicken/egg)...

NVIDIA GPU devices
 Each line of GPU chips comes packaged as “gaming”

(GeForce/GTX) and “computing” (Tesla) boards.

 In Fermi arch, compute-specific boards have fast
double-precision floating point enabled.

 “Gaming” boards are entirely appropriate for many of
our DSP applications (and cheaper!).

(From NVIDIA CUDA Programming Guide)

CUDA terminology
 “device” - the GPU board.

 “host” - the rest of the computer system (CPUs,
memory, etc).

 “kernel” - parallel code that runs on the GPU.

 “thread” - unit of parallel instructions/data within a
kernel.

 “stream” - a series of kernels, data transfers, that
happen sequentially.

CUDA thread hierarchy
 A kernel is executed as

a “grid” of independent
thread blocks.

 Each thread block runs
on a single
multiprocessor unit,
and should contain at
least 32 threads.

CUDA memory hierarchy

Host

Main (CPU) system RAM

PCIe
bus

“On-chip” memory

Fast
Small (~16 kB /
thread block)

“Off-chip”

Slow
Large (~GB)

Memory management
 Optimizing memory access has a huge effect on GPU

code efficiency – a single global mem operation takes
several hundred clock cycles.

 Requires much more thought than typical for CPU-
based programming.

 Global GPU memory read/writes should be:

 Minimized

 “Coalesced”

Global memory

Threads

Existing GPU instruments
 Pulsar instruments (coherent dedisp)

 GUPPI (Green Bank)

 BON (Nancay)

 CASPSR (Parkes)

 Transient detectors

 ARTEMIS (LOFAR)

 Spectrometers

 VEGAS (Green Bank)

 Array correlators

 PAPER / LEDA

 MWA

 … and probably many more!

GUPPI pulsar backend
800 MHz total BW coherent dedispersion, 9-node GPU cluster

(GTX 285)

LEDA / PAPER correlator

<512-input correlators.

100 MHz BW.

F-engine in 16 roach
boards, X-engine in 24
GPUs.

Coded in CUDA, based
on work at CfA.

PAPER version to deploy
summer 2012.

(Thanks Dan Werthimer
and Aaron Parsons!)

VEGAS spectrometer for the GBT
 NRAO/Berkeley project to replace current (old) GBT

Spectrometer.

 More ADC bits, more BW/beams, more flexibility.

 Digitally tunable sub-bands in Roach boards, high-res
spectra in GPUs.

 Based on GUPPI software architecture (“guppi_daq”).

(fig: Simon Scott)

ARTEMIS transient search

 Working prototype for SKA non-image processing.

 Real-time search for radio pulses using CPU/GPU.

 Dedispersion over 4000 DMs in real time in GPU.

 150 MHz LOFAR station beam is 2.5° FWHM.

 Pilot survey 1: 6-8 beams, circumpolar targets

 Pilot survey 2: 6 beams fixed on meridian (8-28° dec)

 Each beam is 800 Mb/s (12.5 MHz) processed by 1
node = 12 Xeon cores + M2050/GTX

Receive udp
stream

Polyphase
filter

Raw to
Stokes

RFI
removal

Dedispersion output

Thanks Aris Karastergiou!
(aris@astro.ok.ca.uk)

ARTEMIS transient search

Dispersion measure pc/cm3

Time (s)

Crab HAMSAT

Pipeline diagnostic plot from drift survey – daily summary from one of six beams

Time (s)

Crab

Cyclic spectroscopy for pulsars
 Allows “de-scattering” of ISM response.

 Much more computation than coherent dedisp.

 See Glenn Jones' talk tomorrow!

(Demorest 2011)

Cyclic spectroscopy for pulsars
 Allows “de-scattering” of ISM response.

 Much more computation than coherent dedisp.

 See Glenn Jones' talk tomorrow!

(Demorest 2011)

Instrumentation for pulsar timing - motivation

Design study: Pulsar instrumentation
 Want as much BW as possible (currently ~1 GHz BW at

L-band); split into ~MHz channels for ~us time resoln.

 Need to do 100 MHz total BW per GPU.

 In GUPPI, single-channel data comes into GPU, then:

 Unpack (8-bit to float)

 Dedisperse (FFT-mult-IFFT; ~10k to 1M-points)

 “Fold” modulo current pulse period:

First steps: FFT
CUFFT interface very similar to FFTW.
Plan:

Exec:

Very easy
introduction to using
GPU/CUDA!

(Note: plot shows
very old result!)

(PBD; 8/2007)

A simple kernel: 8-bit unpack

(Directly from guppi_daq code; dedisperse_gpu.cu)

Non-trivial: Pulse period folding

 The easy serial (CPU) way:

φ(t)
time

0 1 2 ... pha
se

0

N

(figure: Ryan Lynch)

Note: Folding is pretty low intensity (~5
ops/sample). But the data is on the GPU
already, so we want to reduce it there..

Folding, first GPU attempt:

φ(t)Time chunk 0

phase
φ(t)Time chunk 1

phase

φ(t)Time chunk N

phase
+

ph
ase

GPU folding, a better way:

time

0 1 2 ...

t(φ
0
)

ph
ase

0

N

t(φ
1
)

t(φ
N
)

Each thread handles one pulse phase bin, pulling
appropriate samples from input array.

Folded data accumulates in thread-local memory, resulting
in less global mem writes = much faster!

GPU folding code
(guppi_ daq/fold _gpu.c u)

Putting it all together
From recent GBT observation of B1937+21 at 820 MHz:

Goal was 100 MHz BW per GPU (10 ns/samp).

Chirp length (proportional to DM)

The end!
 Questions or comments are of course welcome! Please

share your own GPU experiences.

 Useful links:

 http://developer.nvidia.com/cuda-downloads

 http://www.khronos.org/opencl

 http://github.com/demorest/guppi_daq

 http://dspsr.sourceforge.net

http://developer.nvidia.com/cuda-downloads
http://www.khronos.org/opencl
http://github.com/demorest/guppi_daq
http://dspsr.sourceforge.net/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

