pipeline.h.tasks.flagging package

Submodules

pipeline.h.tasks.flagging.flagdatasetter module

The flagdatasetter module interfaces hid heuristic flaggers to CASA flagdata.

class pipeline.h.tasks.flagging.flagdatasetter.FlagdataSetter(inputs)[source]

Bases: pipeline.infrastructure.basetask.StandardTaskTemplate

Inputs

alias of FlagdataSetterInputs

analyse(results)[source]
flags_to_set(flags)[source]

Set the list of flags.

prepare()[source]

Prepare and execute a flagdata flagging job appropriate to the task inputs.

class pipeline.h.tasks.flagging.flagdatasetter.FlagdataSetterInputs(context, table, vis=None, output_dir=None, inpfile=None)[source]

Bases: pipeline.infrastructure.vdp.StandardInputs

FlagdataSetterInputs manages the inputs for the FlagdataSetter task.

pipeline.h.tasks.flagging.flagdeterbase module

The flagdeterbase module provides base classes for deterministic flagging tasks in the pipeline.

To test these classes, register some data with the pipeline using ImportData, then execute:

import pipeline vis = [ ‘<MS name>’ ]

# Create a pipeline context and register some data context = pipeline.Pipeline().context inputs = pipeline.tasks.ImportData.Inputs(context, vis=vis) task = pipeline.tasks.ImportData(inputs) results = task.execute(dry_run=False) results.accept(context)

# Execute the flagging task inputs = pipeline.tasks.flagging.FlagDeterBase.Inputs(context, autocorr=True, shadow=True, scan=True, scannumber=’4,5,8’, intents=’AMPLI’, edgespw=True, fracspw=0.1) task = pipeline.tasks.flagging.FlagDeterBase(inputs) result = task.execute(dry_run=True)

In other words, create a context, create the inputs (which sets the public variables to the correct values and creates the temporary flag command file), convert the class arguments to arguments to the CASA task flagdata), create the FlagDeterBase() instance, perform FlagDeterBase.analyse(), and execute the class.

class pipeline.h.tasks.flagging.flagdeterbase.FlagDeterBase(inputs)[source]

Bases: pipeline.infrastructure.basetask.StandardTaskTemplate

FlagDeterBase is the base class for deterministic flagging. It can perform many different types of deterministic flagging:

  • Autocorrelations

  • Shadowed antennas

  • Scan and intents

  • Edge channels

  • Online flags

  • Template flags

FlagDeterBase outputs flagdata flagging commands to a temporary ASCII file located in the pipeline working directory; flagdata is then invoked using this command file as input.

Inputs

alias of FlagDeterBaseInputs

analyse(results)[source]

Analyse the results of the flagging operation.

This method does not perform any analysis, so the results object is returned exactly as-is, with no data massaging or results items added. If additional statistics needed to be calculated based on the post-flagging state, this would be a good place to do it.

Return type

:class:~`FlagDeterBaseResults`

prepare()[source]

Prepare and execute a flagdata flagging job appropriate to the task inputs.

This method generates, overwriting if necessary, an ASCII file containing flagdata flagging commands. A flagdata task is then executed, using this ASCII file as inputs.

verify_spw(spw)[source]

Verify that the given spw should be flagged, raising a ValueError if it should not.

Checks in this function should be generic. Observatory-dependent tests should be added by extending FlagDeterBase and overriding this method.

class pipeline.h.tasks.flagging.flagdeterbase.FlagDeterBaseInputs(context, vis=None, output_dir=None, flagbackup=None, autocorr=None, shadow=None, tolerance=None, scan=None, scannumber=None, intents=None, edgespw=None, fracspw=None, fracspwfps=None, online=None, fileonline=None, template=None, filetemplate=None, hm_tbuff=None, tbuff=None)[source]

Bases: pipeline.infrastructure.vdp.StandardInputs

FlagDeterBaseInputs manages the inputs for the FlagDeterBase task.

context

the (Context) holding all pipeline state

vis

a string or list of strings containing the MS name(s) on which to operate

output_dir

the directory to which pipeline data should be sent

flagbackup

a boolean indicating whether whether existing flags should be backed up before new flagging begins.

autocorr

a boolean indicating whether autocorrelations are to be flagged.

shadow

a boolean indicating whether shadowed antennas are to be flagged.

tolerance

a float sets the tolerated projected antenna shadowing in meter. Positive value allows overlap, negative value forces separation.

scan

a boolean indicating whether scan flagging is to be performed.

scannumber

A comma-delimited string stating the scans to flag. Standard data selection syntax is valid.

intents

A comma-delimited string stating the intents to flag. Wildcards (* character) are allowed.

edgespw

A boolean stating whether edge channels are flagged.

fracspw

A float contains the fraction (between 0.0 and 1.0) of channels to removed from the edge.

online

A boolean indicating whether online flags are to be applied.

fileonline

The filename of the ASCII file containing online flagging commands.

template

A boolean indicating whether flagging templates are to be applied.

filetemplate

The filename of the ASCII file that has the flagging template (for RFI, birdies, telluric lines, etc.).

autocorr

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

edgespw

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

fileonline

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

filetemplate

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

flagbackup

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

fracspw

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

hm_tbuff

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

inpfile

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

intents

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

online

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

scan

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

scannumber

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

shadow

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

tbuff

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

template

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

to_casa_args()[source]

Translate the input parameters of this class to task parameters required by the CASA task flagdata. The returned object is a dictionary of flagdata arguments as keyword/value pairs.

Return type

dict

tolerance

VisDependentProperty is a Python data descriptor that standardises the behaviour of pipeline Inputs properties and lets them create default values more easily.

On reading a VisDependentProperty (ie. using the dot prefix: inputs.solint), one of two things happens:

  1. If a NullMarker is found - signifying that no user input has been provided - and a ‘getter’ function has been defined, the getter function will be called to provide a default value for that measurement set.

  2. If a user has overridden the value (eg. inputs.solint = 123), that value will be retrieved.

  3. The value, either the default from step 1 or user-provided from step 2, is run through the optional postprocess function, which gives a final opportunity to change the value depending on the state/value of other properties.

A VisDependentProperty can be made read-only by specifying ‘readonly=True’ when creating the instance.

A VisDependentProperty can be hidden from the containing Inputs string representation by setting ‘hidden=True’ when creating the instance. This will hide the property from the web log and CLI getInputs calls.

Each VisDependentProperty has a set of values it considers equivalent to null. When the user sets the VDP value to one of these null values, the VDP machinery converts this to a private NullObject marker that signifies the property is now unset, resulting in the default value being returned next time the property is read. Developers can specify which values should be converted to NullObject by specifying null_input at creation time, e.g.,

solint = @VisDependentProperty(default=5, null_input=[None, ‘’, ‘RESET’, -1])

class pipeline.h.tasks.flagging.flagdeterbase.FlagDeterBaseResults(summaries, flagcmds)[source]

Bases: pipeline.infrastructure.basetask.Results

flagcmds()[source]
merge_with_context(context)[source]

Merge these results with the given context.

This method will be called during the execution of accept(). For calibration tasks, a typical implementation will register caltables with the pipeline callibrary.

At this point the result is deemed safe to merge, so no further checks on the context need be performed.

Parameters

context (Context) – the target Context

pipeline.h.tasks.flagging.qa module

class pipeline.h.tasks.flagging.qa.FlagDeterBaseListQAHandler[source]

Bases: pipeline.infrastructure.pipelineqa.QAPlugin

child_cls

alias of pipeline.h.tasks.flagging.flagdeterbase.FlagDeterBaseResults

handle(context, result)[source]
result_cls

alias of collections.abc.Iterable

class pipeline.h.tasks.flagging.qa.FlagDeterBaseQAHandler[source]

Bases: pipeline.infrastructure.pipelineqa.QAPlugin

child_cls = None
handle(context, result)[source]
result_cls

alias of pipeline.h.tasks.flagging.flagdeterbase.FlagDeterBaseResults

pipeline.h.tasks.flagging.renderer module

Created on 9 Sep 2014

@author: sjw

class pipeline.h.tasks.flagging.renderer.T2_4MDetailsFlagDeterBaseRenderer(uri='flagdeterbase.mako', description='Deterministic flagging', always_rerender=False)[source]

Bases: pipeline.infrastructure.renderer.basetemplates.T2_4MDetailsDefaultRenderer

static flagplot(result, context)[source]
update_mako_context(mako_context, pipeline_context, result)[source]

Module contents