pipeline.h.tasks.exportdata.exportdata

The exportdata module provides base classes for preparing data products on disk for upload to the archive.

To test these classes, register some data with the pipeline using ImportData, then execute:

import pipeline vis = [ ‘<MS name>’ ]

# Create a pipeline context and register some data context = pipeline.Pipeline().context inputs = pipeline.tasks.ImportData.Inputs(context, vis=vis) task = pipeline.tasks.ImportData(inputs) results = task.execute(dry_run=False) results.accept(context)

# Run some other pipeline tasks, e.g flagging, calibration, # and imaging in a similar manner

# Execute the export data task. The details of # what gets exported depends on what tasks were run # previously but may include the following # TBD inputs = pipeline.tasks.exportdata.Exportdata.Inputs(context,

vis, output_dir, sessions, pprfile, products_dir)

task = pipeline.tasks.exportdata.ExportData(inputs)

results = task.execute(dry_run = True)

Classes

ExportData(inputs)

ExportData is the base class for exporting data to the products subdirectory.

ExportDataInputs(context[, output_dir, …])

ExportDataInputs manages the inputs for the ExportData task.

ExportDataResults([pprequest, sessiondict, …])

PipelineProductNameBuiler()

StdFileProducts(ppr_file, weblog_file, …)