Source code for pipeline.hifa.cli.gotasks.hifa_bandpass

##################### generated by xml-casa (v2) from hifa_bandpass.xml #############
##################### 2643377cfd2d5fa81e8e55df2aa3a976 ##############################
from __future__ import absolute_import
from casashell.private.stack_manip import find_local as __sf__
from casashell.private.stack_manip import find_frame as _find_frame
from casatools.typecheck import validator as _pc
from casatools.coercetype import coerce as _coerce
from pipeline.hifa.cli import hifa_bandpass as _hifa_bandpass_t
from collections import OrderedDict
import numpy
import sys
import os

import shutil

[docs]def static_var(varname, value): def decorate(func): setattr(func, varname, value) return func return decorate
class _hifa_bandpass: """ hifa_bandpass ---- Compute bandpass calibration solutions The hifa_bandpass task computes a bandpass solution for every specified science spectral window. By default a 'phaseup' pre-calibration is performed and applied on the fly to the data, before the bandpass is computed. The hif_refant task may be used to pre-compute a prioritized list of reference antennas. If pipeline mode is 'getinputs' then None is returned. Otherwise the results object for the pipeline task is returned. Issues: There is currently some discussion about whether or not to do an 'ampup' operations at the same time as the 'phaseup'. This is not required for the bandpass computation but the amplitude information may provide a useful quality assessment measure. The specified minsnr parameter is currently applied to the bandpass solution computation but not the 'phaseup' computation. Some noisy solutions in the phaseup may not be properly rejected. --------- parameter descriptions --------------------------------------------- vis List of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. Example: vis=['ngc5921.ms'] caltable List of names for the output calibration tables. Defaults to the standard pipeline naming convention. Example: caltable=['ngc5921.gcal'] field The list of field names or field ids for which bandpasses are computed. Set to field='' by default, which means the task will select all fields. Example: field='3C279', field='3C279,M82' intent A string containing a comma delimited list of intents against which the selected fields are matched. Set to intent='' by default, which means the task will select all data with the BANDPASS intent. Example: intent='*PHASE*' spw The list of spectral windows and channels for which bandpasses are computed. Set to spw='' by default, which means the task will select all science spectral windows. Example: spw='11,13,15,17' antenna Set of data selection antenna IDs hm_phaseup The pre-bandpass solution phaseup gain heuristics. The options are: 'snr': compute solution required to achieve the specified SNR 'manual': use manual solution parameters '': skip phaseup Example: hm_phaseup='manual' phaseupsolint The phase correction solution interval in CASA syntax. Used when hm_phaseup='manual' or as a default if the hm_phaseup='snr' heuristic computation fails. Example: phaseupsolint='300s' phaseupbw Bandwidth to be used for phaseup. Used when hm_phaseup='manual'. Example: phaseupbw='' to use entire bandpass phaseupbw='500MHz' to use central 500MHz phaseupsnr The required SNR for the phaseup solution. Used only if hm_phaseup='snr'. Example: phaseupsnr=10.0 phaseupnsols The minimum number of phaseup gain solutions. Used only if hm_phaseup='snr'. Example: phaseupnsols=4 hm_bandpass The bandpass solution heuristics. The options are: 'snr': compute the solution required to achieve the specified SNR 'smoothed': simple smoothing heuristics 'fixed': use the user defined parameters for all spws solint Time and channel solution intervals in CASA syntax. Default is solint='inf', which is used when hm_bandpass='fixed'. If hm_bandpass is set to 'snr', then the task will attempt to compute and use an optimal SNR-based solint (and warn if this solint is not good enough). If hm_bandpass is set to 'smoothed', the task will use a smoothed solint. maxchannels The bandpass solution smoothing factor in channels. The solution interval is bandwidth / 240. Set to 0 for no smoothing. Used if hm_bandpass='smoothed'. Example: maxchannels=0 evenbpints Force the per spw frequency solint to be evenly divisible into the spw bandpass if hm_bandpass='snr'. Example: evenbpints=False bpsnr The required SNR for the bandpass solution. Used only if hm_bandpass='snr'. Example: bpsnr=30.0 minbpsnr The minimum required SNR for the bandpass solution when strong atmospheric lines exist in Tsys spectra. Used only if hm_bandpass='snr'. Example: minbpsnr=10.0 bpnsols The minimum number of bandpass solutions. Used only if hm_bandpass='snr'. combine Data axes to combine for solving. Axes are '', 'scan', 'spw', 'field' or any comma-separated combination. Example: combine='scan,field' refant List of reference antenna names. Defaults to the value(s) stored in the pipeline context. If undefined in the pipeline context defaults to the CASA reference antenna naming scheme. Example: refant='DV06,DV07' solnorm Normalise the bandpass solution minblperant Minimum number of baselines required per antenna for each solve. Antennas with fewer baselines are excluded from solutions. minsnr Solutions below this SNR are rejected unregister_existing Unregister all bandpass calibrations from the pipeline context before registering the new bandpass calibrations from this task. pipelinemode The pipeline operating mode. In 'automatic' mode the pipeline determines the values of all context defined pipeline inputs automatically. In interactive mode the user can set the pipeline context defined parameters manually. In 'getinputs' mode the user can check the settings of all pipeline parameters without running the task. dryrun Run the commands (True) or generate the commands to be run but do not execute (False). acceptresults Automatically accept the results of the task into the pipeline context (True) or reject them (False). --------- examples ----------------------------------------------------------- 1. Compute a channel bandpass for all visibility files in the pipeline context using the CASA reference antenna determination scheme: hifa_bandpass() 2. Same as the above but precompute a prioritized reference antenna list: hif_refant() hifa_bandpass() """ _info_group_ = """pipeline""" _info_desc_ = """Compute bandpass calibration solutions""" __schema = {'vis': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'caltable': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'field': {'type': 'cStr', 'coerce': _coerce.to_str}, 'intent': {'type': 'cStr', 'coerce': _coerce.to_str}, 'spw': {'type': 'cStr', 'coerce': _coerce.to_str}, 'antenna': {'type': 'cStr', 'coerce': _coerce.to_str}, 'hm_phaseup': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'snr', 'manual', '' ]}, 'phaseupsolint': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'phaseupbw': {'type': 'cStr', 'coerce': _coerce.to_str}, 'phaseupsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'phaseupnsols': {'type': 'cInt'}, 'hm_bandpass': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'snr', 'smoothed', 'fixed' ]}, 'solint': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'maxchannels': {'type': 'cInt'}, 'evenbpints': {'type': 'cBool'}, 'bpsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'minbpsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'bpnsols': {'type': 'cInt'}, 'combine': {'type': 'cStr', 'coerce': _coerce.to_str}, 'refant': {'type': 'cStr', 'coerce': _coerce.to_str}, 'solnorm': {'type': 'cBool'}, 'minblperant': {'type': 'cInt'}, 'minsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'unregister_existing': {'type': 'cBool'}, 'pipelinemode': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'automatic', 'interactive', 'getinputs' ]}, 'dryrun': {'type': 'cBool'}, 'acceptresults': {'type': 'cBool'}} def __init__(self): self.__stdout = None self.__stderr = None self.__root_frame_ = None def __globals_(self): if self.__root_frame_ is None: self.__root_frame_ = _find_frame( ) assert self.__root_frame_ is not None, "could not find CASAshell global frame" return self.__root_frame_ def __to_string_(self,value): if type(value) is str: return "'%s'" % value else: return str(value) def __validate_(self,doc,schema): return _pc.validate(doc,schema) def __do_inp_output(self,param_prefix,description_str,formatting_chars): out = self.__stdout or sys.stdout description = description_str.split( ) prefix_width = 23 + 19 + 4 output = [ ] addon = '' first_addon = True while len(description) > 0: ## starting a new line..................................................................... if len(output) == 0: ## for first line add parameter information............................................ if len(param_prefix)-formatting_chars > prefix_width - 1: output.append(param_prefix) continue addon = param_prefix + ' #' first_addon = True addon_formatting = formatting_chars else: ## for subsequent lines space over prefix width........................................ addon = (' ' * prefix_width) + '#' first_addon = False addon_formatting = 0 ## if first word of description puts us over the screen width, bail........................ if len(addon + description[0]) - addon_formatting + 1 > self.term_width: ## if we're doing the first line make sure it's output................................. if first_addon: output.append(addon) break while len(description) > 0: ## if the next description word puts us over break for the next line................... if len(addon + description[0]) - addon_formatting + 1 > self.term_width: break addon = addon + ' ' + description[0] description.pop(0) output.append(addon) out.write('\n'.join(output) + '\n') #--------- return nonsubparam values ---------------------------------------------- def __hm_phaseup_dflt( self, glb ): return 'snr' def __hm_phaseup( self, glb ): if 'hm_phaseup' in glb: return glb['hm_phaseup'] return 'snr' def __unregister_existing_dflt( self, glb ): return False def __unregister_existing( self, glb ): if 'unregister_existing' in glb: return glb['unregister_existing'] return False def __pipelinemode_dflt( self, glb ): return 'automatic' def __pipelinemode( self, glb ): if 'pipelinemode' in glb: return glb['pipelinemode'] return 'automatic' def __hm_bandpass_dflt( self, glb ): return 'snr' def __hm_bandpass( self, glb ): if 'hm_bandpass' in glb: return glb['hm_bandpass'] return 'snr' #--------- return inp/go default -------------------------------------------------- def __antenna_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __phaseupbw_dflt( self, glb ): if self.__hm_phaseup( glb ) == "manual": return "" return None def __dryrun_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return bool(False) return None def __phaseupnsols_dflt( self, glb ): if self.__hm_phaseup( glb ) == "snr": return int(2) return None def __field_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __minbpsnr_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return float(20.0) return None def __intent_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __refant_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __minsnr_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(3.0) if self.__pipelinemode( glb ) == "getinputs": return float(3.0) return None def __phaseupsnr_dflt( self, glb ): if self.__hm_phaseup( glb ) == "snr": return float(20.0) return None def __vis_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return [] if self.__pipelinemode( glb ) == "getinputs": return [] return None def __acceptresults_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return bool(True) return None def __minblperant_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return int(4) if self.__pipelinemode( glb ) == "getinputs": return int(4) return None def __solnorm_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return bool(True) if self.__pipelinemode( glb ) == "getinputs": return bool(True) return None def __maxchannels_dflt( self, glb ): if self.__hm_bandpass( glb ) == "smoothed": return int(240) return None def __phaseupsolint_dflt( self, glb ): if self.__hm_phaseup( glb ) == "snr": return "int" if self.__hm_phaseup( glb ) == "manual": return "int" return None def __combine_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "scan" if self.__pipelinemode( glb ) == "getinputs": return "scan" return None def __bpsnr_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return float(50.0) return None def __bpnsols_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return int(8) return None def __solint_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return "inf" if self.__hm_bandpass( glb ) == "smoothed": return "inf" if self.__hm_bandpass( glb ) == "fixed": return "inf,7.8125MHz" return None def __evenbpints_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return bool(True) return None def __caltable_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return [] if self.__pipelinemode( glb ) == "getinputs": return [] return None def __spw_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None #--------- return subparam values ------------------------------------------------- def __vis( self, glb ): if 'vis' in glb: return glb['vis'] dflt = self.__vis_dflt( glb ) if dflt is not None: return dflt return [ ] def __caltable( self, glb ): if 'caltable' in glb: return glb['caltable'] dflt = self.__caltable_dflt( glb ) if dflt is not None: return dflt return [ ] def __field( self, glb ): if 'field' in glb: return glb['field'] dflt = self.__field_dflt( glb ) if dflt is not None: return dflt return '' def __intent( self, glb ): if 'intent' in glb: return glb['intent'] dflt = self.__intent_dflt( glb ) if dflt is not None: return dflt return '' def __spw( self, glb ): if 'spw' in glb: return glb['spw'] dflt = self.__spw_dflt( glb ) if dflt is not None: return dflt return '' def __antenna( self, glb ): if 'antenna' in glb: return glb['antenna'] dflt = self.__antenna_dflt( glb ) if dflt is not None: return dflt return '' def __phaseupsolint( self, glb ): if 'phaseupsolint' in glb: return glb['phaseupsolint'] dflt = self.__phaseupsolint_dflt( glb ) if dflt is not None: return dflt return 'int' def __phaseupbw( self, glb ): if 'phaseupbw' in glb: return glb['phaseupbw'] dflt = self.__phaseupbw_dflt( glb ) if dflt is not None: return dflt return '' def __phaseupsnr( self, glb ): if 'phaseupsnr' in glb: return glb['phaseupsnr'] dflt = self.__phaseupsnr_dflt( glb ) if dflt is not None: return dflt return float(20.0) def __phaseupnsols( self, glb ): if 'phaseupnsols' in glb: return glb['phaseupnsols'] dflt = self.__phaseupnsols_dflt( glb ) if dflt is not None: return dflt return int(2) def __solint( self, glb ): if 'solint' in glb: return glb['solint'] dflt = self.__solint_dflt( glb ) if dflt is not None: return dflt return 'inf' def __maxchannels( self, glb ): if 'maxchannels' in glb: return glb['maxchannels'] dflt = self.__maxchannels_dflt( glb ) if dflt is not None: return dflt return int(240) def __evenbpints( self, glb ): if 'evenbpints' in glb: return glb['evenbpints'] dflt = self.__evenbpints_dflt( glb ) if dflt is not None: return dflt return True def __bpsnr( self, glb ): if 'bpsnr' in glb: return glb['bpsnr'] dflt = self.__bpsnr_dflt( glb ) if dflt is not None: return dflt return float(50.0) def __minbpsnr( self, glb ): if 'minbpsnr' in glb: return glb['minbpsnr'] dflt = self.__minbpsnr_dflt( glb ) if dflt is not None: return dflt return float(20.0) def __bpnsols( self, glb ): if 'bpnsols' in glb: return glb['bpnsols'] dflt = self.__bpnsols_dflt( glb ) if dflt is not None: return dflt return int(8) def __combine( self, glb ): if 'combine' in glb: return glb['combine'] dflt = self.__combine_dflt( glb ) if dflt is not None: return dflt return 'scan' def __refant( self, glb ): if 'refant' in glb: return glb['refant'] dflt = self.__refant_dflt( glb ) if dflt is not None: return dflt return '' def __solnorm( self, glb ): if 'solnorm' in glb: return glb['solnorm'] dflt = self.__solnorm_dflt( glb ) if dflt is not None: return dflt return True def __minblperant( self, glb ): if 'minblperant' in glb: return glb['minblperant'] dflt = self.__minblperant_dflt( glb ) if dflt is not None: return dflt return int(4) def __minsnr( self, glb ): if 'minsnr' in glb: return glb['minsnr'] dflt = self.__minsnr_dflt( glb ) if dflt is not None: return dflt return float(3.0) def __dryrun( self, glb ): if 'dryrun' in glb: return glb['dryrun'] dflt = self.__dryrun_dflt( glb ) if dflt is not None: return dflt return False def __acceptresults( self, glb ): if 'acceptresults' in glb: return glb['acceptresults'] dflt = self.__acceptresults_dflt( glb ) if dflt is not None: return dflt return True #--------- subparam inp output ---------------------------------------------------- def __vis_inp(self): if self.__vis_dflt( self.__globals_( ) ) is not None: description = 'List of input MeasurementSets' value = self.__vis( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'vis': value},{'vis': self.__schema['vis']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('vis',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __caltable_inp(self): if self.__caltable_dflt( self.__globals_( ) ) is not None: description = 'List of output caltable(s)' value = self.__caltable( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'caltable': value},{'caltable': self.__schema['caltable']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('caltable',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __field_inp(self): if self.__field_dflt( self.__globals_( ) ) is not None: description = 'List of field names or ids to use in data selection' value = self.__field( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'field': value},{'field': self.__schema['field']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('field',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __intent_inp(self): if self.__intent_dflt( self.__globals_( ) ) is not None: description = 'List of intents to use in data selection' value = self.__intent( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'intent': value},{'intent': self.__schema['intent']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('intent',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __spw_inp(self): if self.__spw_dflt( self.__globals_( ) ) is not None: description = 'List of spectral windows to use in data selection' value = self.__spw( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'spw': value},{'spw': self.__schema['spw']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('spw',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __antenna_inp(self): if self.__antenna_dflt( self.__globals_( ) ) is not None: description = 'Set of data selection antenna IDs' value = self.__antenna( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'antenna': value},{'antenna': self.__schema['antenna']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('antenna',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __hm_phaseup_inp(self): description = 'Phaseup before computing the bandpass' value = self.__hm_phaseup( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'hm_phaseup': value},{'hm_phaseup': self.__schema['hm_phaseup']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output('\x1B[1m\x1B[47m%-19.19s =\x1B[0m %s%-23s%s' % ('hm_phaseup',pre,self.__to_string_(value),post),description,13+len(pre)+len(post)) def __phaseupsolint_inp(self): if self.__phaseupsolint_dflt( self.__globals_( ) ) is not None: description = 'Phaseup correction solution interval' value = self.__phaseupsolint( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'phaseupsolint': value},{'phaseupsolint': self.__schema['phaseupsolint']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('phaseupsolint',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __phaseupbw_inp(self): if self.__phaseupbw_dflt( self.__globals_( ) ) is not None: description = 'Bandwidth to use for phaseup' value = self.__phaseupbw( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'phaseupbw': value},{'phaseupbw': self.__schema['phaseupbw']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('phaseupbw',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __phaseupsnr_inp(self): if self.__phaseupsnr_dflt( self.__globals_( ) ) is not None: description = 'SNR for phaseup solution' value = self.__phaseupsnr( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'phaseupsnr': value},{'phaseupsnr': self.__schema['phaseupsnr']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('phaseupsnr',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __phaseupnsols_inp(self): if self.__phaseupnsols_dflt( self.__globals_( ) ) is not None: description = 'Minimum number of phaseup gain solutions' value = self.__phaseupnsols( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'phaseupnsols': value},{'phaseupnsols': self.__schema['phaseupnsols']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('phaseupnsols',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __hm_bandpass_inp(self): description = 'Bandpass solution heuristics' value = self.__hm_bandpass( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'hm_bandpass': value},{'hm_bandpass': self.__schema['hm_bandpass']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output('\x1B[1m\x1B[47m%-19.19s =\x1B[0m %s%-23s%s' % ('hm_bandpass',pre,self.__to_string_(value),post),description,13+len(pre)+len(post)) def __solint_inp(self): if self.__solint_dflt( self.__globals_( ) ) is not None: description = 'Solution intervals' value = self.__solint( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'solint': value},{'solint': self.__schema['solint']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('solint',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __maxchannels_inp(self): if self.__maxchannels_dflt( self.__globals_( ) ) is not None: description = 'The smoothing factor in channels' value = self.__maxchannels( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'maxchannels': value},{'maxchannels': self.__schema['maxchannels']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('maxchannels',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __evenbpints_inp(self): if self.__evenbpints_dflt( self.__globals_( ) ) is not None: description = 'Force frequency solint to even bandpass intervals' value = self.__evenbpints( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'evenbpints': value},{'evenbpints': self.__schema['evenbpints']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('evenbpints',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __bpsnr_inp(self): if self.__bpsnr_dflt( self.__globals_( ) ) is not None: description = 'SNR for bandpass solution' value = self.__bpsnr( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'bpsnr': value},{'bpsnr': self.__schema['bpsnr']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('bpsnr',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __minbpsnr_inp(self): if self.__minbpsnr_dflt( self.__globals_( ) ) is not None: description = 'Minimum SNR for bandpass frequency solution when strong atmospheric lines exist in Tsys spectra' value = self.__minbpsnr( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'minbpsnr': value},{'minbpsnr': self.__schema['minbpsnr']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('minbpsnr',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __bpnsols_inp(self): if self.__bpnsols_dflt( self.__globals_( ) ) is not None: description = 'Minimum number of bandpass solutions' value = self.__bpnsols( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'bpnsols': value},{'bpnsols': self.__schema['bpnsols']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('bpnsols',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __combine_inp(self): if self.__combine_dflt( self.__globals_( ) ) is not None: description = 'Data axes which to combine for solve (scan, spw, and/or field)' value = self.__combine( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'combine': value},{'combine': self.__schema['combine']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('combine',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __refant_inp(self): if self.__refant_dflt( self.__globals_( ) ) is not None: description = 'List of reference antenna names' value = self.__refant( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'refant': value},{'refant': self.__schema['refant']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('refant',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __solnorm_inp(self): if self.__solnorm_dflt( self.__globals_( ) ) is not None: description = 'Normalise the bandpass solution' value = self.__solnorm( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'solnorm': value},{'solnorm': self.__schema['solnorm']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('solnorm',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __minblperant_inp(self): if self.__minblperant_dflt( self.__globals_( ) ) is not None: description = 'Minimum baselines per antenna required for solve' value = self.__minblperant( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'minblperant': value},{'minblperant': self.__schema['minblperant']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('minblperant',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __minsnr_inp(self): if self.__minsnr_dflt( self.__globals_( ) ) is not None: description = 'Solutions below this SNR are rejected' value = self.__minsnr( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'minsnr': value},{'minsnr': self.__schema['minsnr']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('minsnr',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __unregister_existing_inp(self): description = 'Unregister previous bandpass calibrations' value = self.__unregister_existing( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'unregister_existing': value},{'unregister_existing': self.__schema['unregister_existing']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output('%-19.19s = %s%-23s%s' % ('unregister_existing',pre,self.__to_string_(value),post),description,0+len(pre)+len(post)) def __pipelinemode_inp(self): description = 'The pipeline operation mode' value = self.__pipelinemode( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'pipelinemode': value},{'pipelinemode': self.__schema['pipelinemode']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output('\x1B[1m\x1B[47m%-19.19s =\x1B[0m %s%-23s%s' % ('pipelinemode',pre,self.__to_string_(value),post),description,13+len(pre)+len(post)) def __dryrun_inp(self): if self.__dryrun_dflt( self.__globals_( ) ) is not None: description = 'Run the task (False) or list commands (True)' value = self.__dryrun( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'dryrun': value},{'dryrun': self.__schema['dryrun']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('dryrun',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __acceptresults_inp(self): if self.__acceptresults_dflt( self.__globals_( ) ) is not None: description = 'Automatically accept results into context' value = self.__acceptresults( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'acceptresults': value},{'acceptresults': self.__schema['acceptresults']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-16.16s =\x1B[0m %s%-23s%s' % ('acceptresults',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) #--------- global default implementation------------------------------------------- @static_var('state', __sf__('casa_inp_go_state')) def set_global_defaults(self): self.set_global_defaults.state['last'] = self glb = self.__globals_( ) if 'antenna' in glb: del glb['antenna'] if 'phaseupbw' in glb: del glb['phaseupbw'] if 'dryrun' in glb: del glb['dryrun'] if 'unregister_existing' in glb: del glb['unregister_existing'] if 'phaseupnsols' in glb: del glb['phaseupnsols'] if 'field' in glb: del glb['field'] if 'pipelinemode' in glb: del glb['pipelinemode'] if 'minbpsnr' in glb: del glb['minbpsnr'] if 'intent' in glb: del glb['intent'] if 'refant' in glb: del glb['refant'] if 'minsnr' in glb: del glb['minsnr'] if 'phaseupsnr' in glb: del glb['phaseupsnr'] if 'vis' in glb: del glb['vis'] if 'acceptresults' in glb: del glb['acceptresults'] if 'minblperant' in glb: del glb['minblperant'] if 'solnorm' in glb: del glb['solnorm'] if 'maxchannels' in glb: del glb['maxchannels'] if 'phaseupsolint' in glb: del glb['phaseupsolint'] if 'combine' in glb: del glb['combine'] if 'bpsnr' in glb: del glb['bpsnr'] if 'bpnsols' in glb: del glb['bpnsols'] if 'hm_phaseup' in glb: del glb['hm_phaseup'] if 'solint' in glb: del glb['solint'] if 'evenbpints' in glb: del glb['evenbpints'] if 'caltable' in glb: del glb['caltable'] if 'hm_bandpass' in glb: del glb['hm_bandpass'] if 'spw' in glb: del glb['spw'] #--------- inp function ----------------------------------------------------------- def inp(self): print("# hifa_bandpass -- %s" % self._info_desc_) self.term_width, self.term_height = shutil.get_terminal_size(fallback=(80, 24)) self.__vis_inp( ) self.__caltable_inp( ) self.__field_inp( ) self.__intent_inp( ) self.__spw_inp( ) self.__antenna_inp( ) self.__hm_phaseup_inp( ) self.__phaseupsolint_inp( ) self.__phaseupbw_inp( ) self.__phaseupsnr_inp( ) self.__phaseupnsols_inp( ) self.__hm_bandpass_inp( ) self.__solint_inp( ) self.__maxchannels_inp( ) self.__evenbpints_inp( ) self.__bpsnr_inp( ) self.__minbpsnr_inp( ) self.__bpnsols_inp( ) self.__combine_inp( ) self.__refant_inp( ) self.__solnorm_inp( ) self.__minblperant_inp( ) self.__minsnr_inp( ) self.__unregister_existing_inp( ) self.__pipelinemode_inp( ) self.__dryrun_inp( ) self.__acceptresults_inp( ) #--------- tget function ---------------------------------------------------------- @static_var('state', __sf__('casa_inp_go_state')) def tget(self,file=None): from casashell.private.stack_manip import find_frame from runpy import run_path filename = None if file is None: if os.path.isfile("hifa_bandpass.last"): filename = "hifa_bandpass.last" elif isinstance(file, str): if os.path.isfile(file): filename = file if filename is not None: glob = find_frame( ) newglob = run_path( filename, init_globals={ } ) for i in newglob: glob[i] = newglob[i] self.tget.state['last'] = self else: print("could not find last file, setting defaults instead...") self.set_global_defaults( ) def __call__( self, vis=None, caltable=None, field=None, intent=None, spw=None, antenna=None, hm_phaseup=None, phaseupsolint=None, phaseupbw=None, phaseupsnr=None, phaseupnsols=None, hm_bandpass=None, solint=None, maxchannels=None, evenbpints=None, bpsnr=None, minbpsnr=None, bpnsols=None, combine=None, refant=None, solnorm=None, minblperant=None, minsnr=None, unregister_existing=None, pipelinemode=None, dryrun=None, acceptresults=None ): def noobj(s): if s.startswith('<') and s.endswith('>'): return "None" else: return s _prefile = os.path.realpath('hifa_bandpass.pre') _postfile = os.path.realpath('hifa_bandpass.last') _return_result_ = None _arguments = [vis,caltable,field,intent,spw,antenna,hm_phaseup,phaseupsolint,phaseupbw,phaseupsnr,phaseupnsols,hm_bandpass,solint,maxchannels,evenbpints,bpsnr,minbpsnr,bpnsols,combine,refant,solnorm,minblperant,minsnr,unregister_existing,pipelinemode,dryrun,acceptresults] _invocation_parameters = OrderedDict( ) if any(map(lambda x: x is not None,_arguments)): # invoke python style # set the non sub-parameters that are not None local_global = { } if hm_phaseup is not None: local_global['hm_phaseup'] = hm_phaseup if hm_bandpass is not None: local_global['hm_bandpass'] = hm_bandpass if unregister_existing is not None: local_global['unregister_existing'] = unregister_existing if pipelinemode is not None: local_global['pipelinemode'] = pipelinemode # the invocation parameters for the non-subparameters can now be set - this picks up those defaults _invocation_parameters['hm_phaseup'] = self.__hm_phaseup( local_global ) _invocation_parameters['hm_bandpass'] = self.__hm_bandpass( local_global ) _invocation_parameters['unregister_existing'] = self.__unregister_existing( local_global ) _invocation_parameters['pipelinemode'] = self.__pipelinemode( local_global ) # the sub-parameters can then be set. Use the supplied value if not None, else the function, which gets the appropriate default _invocation_parameters['vis'] = self.__vis( _invocation_parameters ) if vis is None else vis _invocation_parameters['caltable'] = self.__caltable( _invocation_parameters ) if caltable is None else caltable _invocation_parameters['field'] = self.__field( _invocation_parameters ) if field is None else field _invocation_parameters['intent'] = self.__intent( _invocation_parameters ) if intent is None else intent _invocation_parameters['spw'] = self.__spw( _invocation_parameters ) if spw is None else spw _invocation_parameters['antenna'] = self.__antenna( _invocation_parameters ) if antenna is None else antenna _invocation_parameters['phaseupsolint'] = self.__phaseupsolint( _invocation_parameters ) if phaseupsolint is None else phaseupsolint _invocation_parameters['phaseupbw'] = self.__phaseupbw( _invocation_parameters ) if phaseupbw is None else phaseupbw _invocation_parameters['phaseupsnr'] = self.__phaseupsnr( _invocation_parameters ) if phaseupsnr is None else phaseupsnr _invocation_parameters['phaseupnsols'] = self.__phaseupnsols( _invocation_parameters ) if phaseupnsols is None else phaseupnsols _invocation_parameters['solint'] = self.__solint( _invocation_parameters ) if solint is None else solint _invocation_parameters['maxchannels'] = self.__maxchannels( _invocation_parameters ) if maxchannels is None else maxchannels _invocation_parameters['evenbpints'] = self.__evenbpints( _invocation_parameters ) if evenbpints is None else evenbpints _invocation_parameters['bpsnr'] = self.__bpsnr( _invocation_parameters ) if bpsnr is None else bpsnr _invocation_parameters['minbpsnr'] = self.__minbpsnr( _invocation_parameters ) if minbpsnr is None else minbpsnr _invocation_parameters['bpnsols'] = self.__bpnsols( _invocation_parameters ) if bpnsols is None else bpnsols _invocation_parameters['combine'] = self.__combine( _invocation_parameters ) if combine is None else combine _invocation_parameters['refant'] = self.__refant( _invocation_parameters ) if refant is None else refant _invocation_parameters['solnorm'] = self.__solnorm( _invocation_parameters ) if solnorm is None else solnorm _invocation_parameters['minblperant'] = self.__minblperant( _invocation_parameters ) if minblperant is None else minblperant _invocation_parameters['minsnr'] = self.__minsnr( _invocation_parameters ) if minsnr is None else minsnr _invocation_parameters['dryrun'] = self.__dryrun( _invocation_parameters ) if dryrun is None else dryrun _invocation_parameters['acceptresults'] = self.__acceptresults( _invocation_parameters ) if acceptresults is None else acceptresults else: # invoke with inp/go semantics _invocation_parameters['vis'] = self.__vis( self.__globals_( ) ) _invocation_parameters['caltable'] = self.__caltable( self.__globals_( ) ) _invocation_parameters['field'] = self.__field( self.__globals_( ) ) _invocation_parameters['intent'] = self.__intent( self.__globals_( ) ) _invocation_parameters['spw'] = self.__spw( self.__globals_( ) ) _invocation_parameters['antenna'] = self.__antenna( self.__globals_( ) ) _invocation_parameters['hm_phaseup'] = self.__hm_phaseup( self.__globals_( ) ) _invocation_parameters['phaseupsolint'] = self.__phaseupsolint( self.__globals_( ) ) _invocation_parameters['phaseupbw'] = self.__phaseupbw( self.__globals_( ) ) _invocation_parameters['phaseupsnr'] = self.__phaseupsnr( self.__globals_( ) ) _invocation_parameters['phaseupnsols'] = self.__phaseupnsols( self.__globals_( ) ) _invocation_parameters['hm_bandpass'] = self.__hm_bandpass( self.__globals_( ) ) _invocation_parameters['solint'] = self.__solint( self.__globals_( ) ) _invocation_parameters['maxchannels'] = self.__maxchannels( self.__globals_( ) ) _invocation_parameters['evenbpints'] = self.__evenbpints( self.__globals_( ) ) _invocation_parameters['bpsnr'] = self.__bpsnr( self.__globals_( ) ) _invocation_parameters['minbpsnr'] = self.__minbpsnr( self.__globals_( ) ) _invocation_parameters['bpnsols'] = self.__bpnsols( self.__globals_( ) ) _invocation_parameters['combine'] = self.__combine( self.__globals_( ) ) _invocation_parameters['refant'] = self.__refant( self.__globals_( ) ) _invocation_parameters['solnorm'] = self.__solnorm( self.__globals_( ) ) _invocation_parameters['minblperant'] = self.__minblperant( self.__globals_( ) ) _invocation_parameters['minsnr'] = self.__minsnr( self.__globals_( ) ) _invocation_parameters['unregister_existing'] = self.__unregister_existing( self.__globals_( ) ) _invocation_parameters['pipelinemode'] = self.__pipelinemode( self.__globals_( ) ) _invocation_parameters['dryrun'] = self.__dryrun( self.__globals_( ) ) _invocation_parameters['acceptresults'] = self.__acceptresults( self.__globals_( ) ) try: with open(_prefile,'w') as _f: for _i in _invocation_parameters: _f.write("%-19s = %s\n" % (_i,noobj(repr(_invocation_parameters[_i])))) _f.write("#hifa_bandpass( ") count = 0 for _i in _invocation_parameters: _f.write("%s=%s" % (_i,noobj(repr(_invocation_parameters[_i])))) count += 1 if count < len(_invocation_parameters): _f.write(",") _f.write(" )\n") except: pass try: _return_result_ = _hifa_bandpass_t( _invocation_parameters['vis'],_invocation_parameters['caltable'],_invocation_parameters['field'],_invocation_parameters['intent'],_invocation_parameters['spw'],_invocation_parameters['antenna'],_invocation_parameters['hm_phaseup'],_invocation_parameters['phaseupsolint'],_invocation_parameters['phaseupbw'],_invocation_parameters['phaseupsnr'],_invocation_parameters['phaseupnsols'],_invocation_parameters['hm_bandpass'],_invocation_parameters['solint'],_invocation_parameters['maxchannels'],_invocation_parameters['evenbpints'],_invocation_parameters['bpsnr'],_invocation_parameters['minbpsnr'],_invocation_parameters['bpnsols'],_invocation_parameters['combine'],_invocation_parameters['refant'],_invocation_parameters['solnorm'],_invocation_parameters['minblperant'],_invocation_parameters['minsnr'],_invocation_parameters['unregister_existing'],_invocation_parameters['pipelinemode'],_invocation_parameters['dryrun'],_invocation_parameters['acceptresults'] ) except Exception as e: from traceback import format_exc from casatasks import casalog casalog.origin('hifa_bandpass') casalog.post("Exception Reported: Error in hifa_bandpass: %s" % str(e),'SEVERE') casalog.post(format_exc( )) _return_result_ = False try: os.rename(_prefile,_postfile) except: pass return _return_result_ hifa_bandpass = _hifa_bandpass( )