Source code for pipeline.hifa.cli.gotasks.hifa_bandpassflag

##################### generated by xml-casa (v2) from hifa_bandpassflag.xml #########
##################### 5df97ea7120ffe62bf98c4322f4de6fd ##############################
from __future__ import absolute_import
from casashell.private.stack_manip import find_local as __sf__
from casashell.private.stack_manip import find_frame as _find_frame
from casatools.typecheck import validator as _pc
from casatools.coercetype import coerce as _coerce
from pipeline.hifa.cli import hifa_bandpassflag as _hifa_bandpassflag_t
from collections import OrderedDict
import numpy
import sys
import os

import shutil

[docs]def static_var(varname, value): def decorate(func): setattr(func, varname, value) return func return decorate
class _hifa_bandpassflag: """ hifa_bandpassflag ---- Bandpass calibration flagging This task performs a preliminary phased-up bandpass solution and temporarily applies it, then computes the flagging heuristics by calling hif_correctedampflag which looks for outlier visibility points by statistically examining the scalar difference of the corrected amplitudes minus model amplitudes, and then flags those outliers. The philosophy is that only outlier data points that have remained outliers after calibration will be flagged. Note that the phase of the data is not assessed. Plots are generated at two points in this workflow: after bandpass calibration but before flagging heuristics are run, and after flagging heuristics have been run and applied. If no points were flagged, the 'after' plots are not generated or displayed. If pipeline mode is 'getinputs' then None is returned. Otherwise the results object for the pipeline task is returned. --------- parameter descriptions --------------------------------------------- vis List of input MeasurementSets. Defaults to the list of MeasurementSets specified in the pipeline context. Example: vis=['ngc5921.ms'] caltable List of names for the output calibration tables. Defaults to the standard pipeline naming convention. Example: caltable=['ngc5921.gcal'] intent A string containing a comma delimited list of intents against which the selected fields are matched. Set to intent='' by default, which means the task will select all data with the BANDPASS intent. Example: intent='*PHASE*' field The list of field names or field ids for which bandpasses are computed. Set to field='' by default, which means the task will select all fields. Example: field='3C279', field='3C279,M82' spw The list of spectral windows and channels for which bandpasses are computed. Set to spw='' by default, which means the task will select all science spectral windows. Example: spw='11,13,15,17' antenna Set of data selection antenna IDs hm_phaseup The pre-bandpass solution phaseup gain heuristics. The options are: 'snr': compute solution required to achieve the specified SNR 'manual': use manual solution parameters '': skip phaseup Example: hm_phaseup='manual' phaseupsolint The phase correction solution interval in CASA syntax. Used when hm_phaseup='manual' or as a default if the hm_phaseup='snr' heuristic computation fails. Example: phaseupsolint='300s' phaseupbw Bandwidth to be used for phaseup. Used when hm_phaseup='manual'. Example: phaseupbw='' to use entire bandpass phaseupbw='500MHz' to use central 500MHz phaseupsnr The required SNR for the phaseup solution. Used only if hm_phaseup='snr'. Example: phaseupsnr=10.0 phaseupnsols The minimum number of phaseup gain solutions. Used only if hm_phaseup='snr'. Example: phaseupnsols=4 hm_bandpass The bandpass solution heuristics. The options are: 'snr': compute the solution required to achieve the specified SNR 'smoothed': simple smoothing heuristics 'fixed': use the user defined parameters for all spws solint Time and channel solution intervals in CASA syntax. Default is solint='inf', which is used when hm_bandpass='fixed'. If hm_bandpass is set to 'snr', then the task will attempt to compute and use an optimal SNR-based solint (and warn if this solint is not good enough). If hm_bandpass is set to 'smoothed', the task will use a smoothed solint. maxchannels The bandpass solution smoothing factor in channels. The solution interval is bandwidth / 240. Set to 0 for no smoothing. Used if hm_bandpass='smoothed'. Example: maxchannels=0 evenbpints Force the per spw frequency solint to be evenly divisible into the spw bandpass if hm_bandpass='snr'. Example: evenbpints=False bpsnr The required SNR for the bandpass solution. Used only if hm_bandpass='snr'. Example: bpsnr=30.0 minbpsnr The minimum required SNR for the bandpass solution when strong atmospheric lines exist in Tsys spectra. Used only if hm_bandpass='snr'. Example: minbpsnr=10.0 bpnsols The minimum number of bandpass solutions. Used only if hm_bandpass='snr'. combine Data axes to combine for solving. Axes are '', 'scan', 'spw', 'field' or any comma-separated combination. Example: combine='scan,field' refant List of reference antenna names. Defaults to the value(s) stored in the pipeline context. If undefined in the pipeline context defaults to the CASA reference antenna naming scheme. Example: refant='DV06,DV07' minblperant Minimum number of baselines required per antenna for each solve. Antennas with fewer baselines are excluded from solutions. minsnr Solutions below this SNR are rejected solnorm Normalise the bandpass solution antnegsig Lower sigma threshold for identifying outliers as a result of bad antennas within individual timestamps. antpossig Upper sigma threshold for identifying outliers as a result of bad antennas within individual timestamps. tmantint Threshold for maximum fraction of timestamps that are allowed to contain outliers. tmint Initial threshold for maximum fraction of 'outlier timestamps' over 'total timestamps' that a baseline may be a part of. tmbl Initial threshold for maximum fraction of 'bad baselines' over 'all baselines' that an antenna may be a part of. antblnegsig Lower sigma threshold for identifying outliers as a result of 'bad baselines' and/or 'bad antennas' within baselines (across all timestamps). antblpossig Upper sigma threshold for identifying outliers as a result of 'bad baselines' and/or 'bad antennas' within baselines (across all timestamps). relaxed_factor Relaxed value to set the threshold scaling factor to under certain conditions (see task description). niter Maximum number of times to iterate on evaluation of flagging heuristics. If an iteration results in no new flags, then subsequent iterations are skipped. pipelinemode The pipeline operating mode. In 'automatic' mode the pipeline determines the values of all context defined pipeline inputs automatically. In interactive mode the user can set the pipeline context defined parameters manually. In 'getinputs' mode the user can check the settings of all pipeline parameters without running the task. dryrun Run the commands (True) or generate the commands to be run but do not execute (False). acceptresults Automatically accept the results of the task into the pipeline context (True) or reject them (False). --------- examples ----------------------------------------------------------- 1. run with recommended settings to create bandpass solution with flagging using recommended thresholds: hifa_bandpassflag() """ _info_group_ = """pipeline""" _info_desc_ = """Bandpass calibration flagging""" __schema = {'vis': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'caltable': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'intent': {'type': 'cStr', 'coerce': _coerce.to_str}, 'field': {'type': 'cStr', 'coerce': _coerce.to_str}, 'spw': {'type': 'cStr', 'coerce': _coerce.to_str}, 'antenna': {'type': 'cStr', 'coerce': _coerce.to_str}, 'hm_phaseup': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'snr', 'manual', '' ]}, 'phaseupsolint': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'phaseupbw': {'type': 'cStr', 'coerce': _coerce.to_str}, 'phaseupsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'phaseupnsols': {'type': 'cInt'}, 'hm_bandpass': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'snr', 'smoothed', 'fixed' ]}, 'solint': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'maxchannels': {'type': 'cInt'}, 'evenbpints': {'type': 'cBool'}, 'bpsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'minbpsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'bpnsols': {'type': 'cInt'}, 'combine': {'type': 'cStr', 'coerce': _coerce.to_str}, 'refant': {'type': 'cStr', 'coerce': _coerce.to_str}, 'minblperant': {'type': 'cInt'}, 'minsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'solnorm': {'type': 'cBool'}, 'antnegsig': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'antpossig': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'tmantint': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'tmint': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'tmbl': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'antblnegsig': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'antblpossig': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'relaxed_factor': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'niter': {'type': 'cInt'}, 'pipelinemode': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'automatic', 'interactive', 'getinputs' ]}, 'dryrun': {'type': 'cBool'}, 'acceptresults': {'type': 'cBool'}} def __init__(self): self.__stdout = None self.__stderr = None self.__root_frame_ = None def __globals_(self): if self.__root_frame_ is None: self.__root_frame_ = _find_frame( ) assert self.__root_frame_ is not None, "could not find CASAshell global frame" return self.__root_frame_ def __to_string_(self,value): if type(value) is str: return "'%s'" % value else: return str(value) def __validate_(self,doc,schema): return _pc.validate(doc,schema) def __do_inp_output(self,param_prefix,description_str,formatting_chars): out = self.__stdout or sys.stdout description = description_str.split( ) prefix_width = 23 + 17 + 4 output = [ ] addon = '' first_addon = True while len(description) > 0: ## starting a new line..................................................................... if len(output) == 0: ## for first line add parameter information............................................ if len(param_prefix)-formatting_chars > prefix_width - 1: output.append(param_prefix) continue addon = param_prefix + ' #' first_addon = True addon_formatting = formatting_chars else: ## for subsequent lines space over prefix width........................................ addon = (' ' * prefix_width) + '#' first_addon = False addon_formatting = 0 ## if first word of description puts us over the screen width, bail........................ if len(addon + description[0]) - addon_formatting + 1 > self.term_width: ## if we're doing the first line make sure it's output................................. if first_addon: output.append(addon) break while len(description) > 0: ## if the next description word puts us over break for the next line................... if len(addon + description[0]) - addon_formatting + 1 > self.term_width: break addon = addon + ' ' + description[0] description.pop(0) output.append(addon) out.write('\n'.join(output) + '\n') #--------- return nonsubparam values ---------------------------------------------- def __hm_phaseup_dflt( self, glb ): return 'snr' def __hm_phaseup( self, glb ): if 'hm_phaseup' in glb: return glb['hm_phaseup'] return 'snr' def __pipelinemode_dflt( self, glb ): return 'automatic' def __pipelinemode( self, glb ): if 'pipelinemode' in glb: return glb['pipelinemode'] return 'automatic' def __hm_bandpass_dflt( self, glb ): return 'snr' def __hm_bandpass( self, glb ): if 'hm_bandpass' in glb: return glb['hm_bandpass'] return 'snr' #--------- return inp/go default -------------------------------------------------- def __antenna_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __phaseupbw_dflt( self, glb ): if self.__hm_phaseup( glb ) == "manual": return "" return None def __dryrun_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return bool(False) return None def __antblnegsig_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(3.4) if self.__pipelinemode( glb ) == "getinputs": return float(3.4) return None def __phaseupnsols_dflt( self, glb ): if self.__hm_phaseup( glb ) == "snr": return int(2) return None def __tmbl_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(0.175) if self.__pipelinemode( glb ) == "getinputs": return float(0.175) return None def __field_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __minbpsnr_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return float(20.0) return None def __intent_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __antpossig_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(4.6) if self.__pipelinemode( glb ) == "getinputs": return float(4.6) return None def __refant_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __tmantint_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(0.063) if self.__pipelinemode( glb ) == "getinputs": return float(0.063) return None def __minsnr_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(3.0) if self.__pipelinemode( glb ) == "getinputs": return float(3.0) return None def __phaseupsnr_dflt( self, glb ): if self.__hm_phaseup( glb ) == "snr": return float(20.0) return None def __vis_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return [] if self.__pipelinemode( glb ) == "getinputs": return [] return None def __acceptresults_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return bool(True) return None def __minblperant_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return int(4) if self.__pipelinemode( glb ) == "getinputs": return int(4) return None def __tmint_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(0.085) if self.__pipelinemode( glb ) == "getinputs": return float(0.085) return None def __solnorm_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return bool(True) if self.__pipelinemode( glb ) == "getinputs": return bool(True) return None def __relaxed_factor_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(2.0) if self.__pipelinemode( glb ) == "getinputs": return float(2.0) return None def __maxchannels_dflt( self, glb ): if self.__hm_bandpass( glb ) == "smoothed": return int(240) return None def __phaseupsolint_dflt( self, glb ): if self.__hm_phaseup( glb ) == "snr": return "int" if self.__hm_phaseup( glb ) == "manual": return "int" return None def __combine_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "scan" if self.__pipelinemode( glb ) == "getinputs": return "scan" return None def __bpsnr_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return float(50.0) return None def __niter_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return int(2) if self.__pipelinemode( glb ) == "getinputs": return int(2) return None def __bpnsols_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return int(8) return None def __solint_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return "inf" if self.__hm_bandpass( glb ) == "smoothed": return "inf" if self.__hm_bandpass( glb ) == "fixed": return "inf,7.8125MHz" return None def __evenbpints_dflt( self, glb ): if self.__hm_bandpass( glb ) == "snr": return bool(True) return None def __caltable_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return [] if self.__pipelinemode( glb ) == "getinputs": return [] return None def __antnegsig_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(4.0) if self.__pipelinemode( glb ) == "getinputs": return float(4.0) return None def __spw_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return "" if self.__pipelinemode( glb ) == "getinputs": return "" return None def __antblpossig_dflt( self, glb ): if self.__pipelinemode( glb ) == "interactive": return float(3.2) if self.__pipelinemode( glb ) == "getinputs": return float(3.2) return None #--------- return subparam values ------------------------------------------------- def __vis( self, glb ): if 'vis' in glb: return glb['vis'] dflt = self.__vis_dflt( glb ) if dflt is not None: return dflt return [ ] def __caltable( self, glb ): if 'caltable' in glb: return glb['caltable'] dflt = self.__caltable_dflt( glb ) if dflt is not None: return dflt return [ ] def __intent( self, glb ): if 'intent' in glb: return glb['intent'] dflt = self.__intent_dflt( glb ) if dflt is not None: return dflt return '' def __field( self, glb ): if 'field' in glb: return glb['field'] dflt = self.__field_dflt( glb ) if dflt is not None: return dflt return '' def __spw( self, glb ): if 'spw' in glb: return glb['spw'] dflt = self.__spw_dflt( glb ) if dflt is not None: return dflt return '' def __antenna( self, glb ): if 'antenna' in glb: return glb['antenna'] dflt = self.__antenna_dflt( glb ) if dflt is not None: return dflt return '' def __phaseupsolint( self, glb ): if 'phaseupsolint' in glb: return glb['phaseupsolint'] dflt = self.__phaseupsolint_dflt( glb ) if dflt is not None: return dflt return 'int' def __phaseupbw( self, glb ): if 'phaseupbw' in glb: return glb['phaseupbw'] dflt = self.__phaseupbw_dflt( glb ) if dflt is not None: return dflt return '' def __phaseupsnr( self, glb ): if 'phaseupsnr' in glb: return glb['phaseupsnr'] dflt = self.__phaseupsnr_dflt( glb ) if dflt is not None: return dflt return float(20.0) def __phaseupnsols( self, glb ): if 'phaseupnsols' in glb: return glb['phaseupnsols'] dflt = self.__phaseupnsols_dflt( glb ) if dflt is not None: return dflt return int(2) def __solint( self, glb ): if 'solint' in glb: return glb['solint'] dflt = self.__solint_dflt( glb ) if dflt is not None: return dflt return 'inf' def __maxchannels( self, glb ): if 'maxchannels' in glb: return glb['maxchannels'] dflt = self.__maxchannels_dflt( glb ) if dflt is not None: return dflt return int(240) def __evenbpints( self, glb ): if 'evenbpints' in glb: return glb['evenbpints'] dflt = self.__evenbpints_dflt( glb ) if dflt is not None: return dflt return True def __bpsnr( self, glb ): if 'bpsnr' in glb: return glb['bpsnr'] dflt = self.__bpsnr_dflt( glb ) if dflt is not None: return dflt return float(50.0) def __minbpsnr( self, glb ): if 'minbpsnr' in glb: return glb['minbpsnr'] dflt = self.__minbpsnr_dflt( glb ) if dflt is not None: return dflt return float(20.0) def __bpnsols( self, glb ): if 'bpnsols' in glb: return glb['bpnsols'] dflt = self.__bpnsols_dflt( glb ) if dflt is not None: return dflt return int(8) def __combine( self, glb ): if 'combine' in glb: return glb['combine'] dflt = self.__combine_dflt( glb ) if dflt is not None: return dflt return 'scan' def __refant( self, glb ): if 'refant' in glb: return glb['refant'] dflt = self.__refant_dflt( glb ) if dflt is not None: return dflt return '' def __minblperant( self, glb ): if 'minblperant' in glb: return glb['minblperant'] dflt = self.__minblperant_dflt( glb ) if dflt is not None: return dflt return int(4) def __minsnr( self, glb ): if 'minsnr' in glb: return glb['minsnr'] dflt = self.__minsnr_dflt( glb ) if dflt is not None: return dflt return float(3.0) def __solnorm( self, glb ): if 'solnorm' in glb: return glb['solnorm'] dflt = self.__solnorm_dflt( glb ) if dflt is not None: return dflt return True def __antnegsig( self, glb ): if 'antnegsig' in glb: return glb['antnegsig'] dflt = self.__antnegsig_dflt( glb ) if dflt is not None: return dflt return float(4.0) def __antpossig( self, glb ): if 'antpossig' in glb: return glb['antpossig'] dflt = self.__antpossig_dflt( glb ) if dflt is not None: return dflt return float(4.6) def __tmantint( self, glb ): if 'tmantint' in glb: return glb['tmantint'] dflt = self.__tmantint_dflt( glb ) if dflt is not None: return dflt return float(0.063) def __tmint( self, glb ): if 'tmint' in glb: return glb['tmint'] dflt = self.__tmint_dflt( glb ) if dflt is not None: return dflt return float(0.085) def __tmbl( self, glb ): if 'tmbl' in glb: return glb['tmbl'] dflt = self.__tmbl_dflt( glb ) if dflt is not None: return dflt return float(0.175) def __antblnegsig( self, glb ): if 'antblnegsig' in glb: return glb['antblnegsig'] dflt = self.__antblnegsig_dflt( glb ) if dflt is not None: return dflt return float(3.4) def __antblpossig( self, glb ): if 'antblpossig' in glb: return glb['antblpossig'] dflt = self.__antblpossig_dflt( glb ) if dflt is not None: return dflt return float(3.2) def __relaxed_factor( self, glb ): if 'relaxed_factor' in glb: return glb['relaxed_factor'] dflt = self.__relaxed_factor_dflt( glb ) if dflt is not None: return dflt return float(2.0) def __niter( self, glb ): if 'niter' in glb: return glb['niter'] dflt = self.__niter_dflt( glb ) if dflt is not None: return dflt return int(2) def __dryrun( self, glb ): if 'dryrun' in glb: return glb['dryrun'] dflt = self.__dryrun_dflt( glb ) if dflt is not None: return dflt return False def __acceptresults( self, glb ): if 'acceptresults' in glb: return glb['acceptresults'] dflt = self.__acceptresults_dflt( glb ) if dflt is not None: return dflt return True #--------- subparam inp output ---------------------------------------------------- def __vis_inp(self): if self.__vis_dflt( self.__globals_( ) ) is not None: description = 'List of input MeasurementSets' value = self.__vis( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'vis': value},{'vis': self.__schema['vis']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('vis',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __caltable_inp(self): if self.__caltable_dflt( self.__globals_( ) ) is not None: description = 'List of output caltable(s)' value = self.__caltable( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'caltable': value},{'caltable': self.__schema['caltable']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('caltable',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __intent_inp(self): if self.__intent_dflt( self.__globals_( ) ) is not None: description = 'List of intents to use in data selection' value = self.__intent( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'intent': value},{'intent': self.__schema['intent']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('intent',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __field_inp(self): if self.__field_dflt( self.__globals_( ) ) is not None: description = 'List of field names or ids to use in data selection' value = self.__field( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'field': value},{'field': self.__schema['field']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('field',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __spw_inp(self): if self.__spw_dflt( self.__globals_( ) ) is not None: description = 'List of spectral windows to use in data selection' value = self.__spw( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'spw': value},{'spw': self.__schema['spw']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('spw',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __antenna_inp(self): if self.__antenna_dflt( self.__globals_( ) ) is not None: description = 'Set of data selection antenna IDs' value = self.__antenna( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'antenna': value},{'antenna': self.__schema['antenna']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('antenna',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __hm_phaseup_inp(self): description = 'Phaseup before computing the bandpass' value = self.__hm_phaseup( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'hm_phaseup': value},{'hm_phaseup': self.__schema['hm_phaseup']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output('\x1B[1m\x1B[47m%-17.17s =\x1B[0m %s%-23s%s' % ('hm_phaseup',pre,self.__to_string_(value),post),description,13+len(pre)+len(post)) def __phaseupsolint_inp(self): if self.__phaseupsolint_dflt( self.__globals_( ) ) is not None: description = 'Phaseup correction solution interval' value = self.__phaseupsolint( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'phaseupsolint': value},{'phaseupsolint': self.__schema['phaseupsolint']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('phaseupsolint',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __phaseupbw_inp(self): if self.__phaseupbw_dflt( self.__globals_( ) ) is not None: description = 'Bandwidth to use for phaseup' value = self.__phaseupbw( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'phaseupbw': value},{'phaseupbw': self.__schema['phaseupbw']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('phaseupbw',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __phaseupsnr_inp(self): if self.__phaseupsnr_dflt( self.__globals_( ) ) is not None: description = 'SNR for phaseup solution' value = self.__phaseupsnr( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'phaseupsnr': value},{'phaseupsnr': self.__schema['phaseupsnr']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('phaseupsnr',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __phaseupnsols_inp(self): if self.__phaseupnsols_dflt( self.__globals_( ) ) is not None: description = 'Minimum number of phaseup gain solutions' value = self.__phaseupnsols( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'phaseupnsols': value},{'phaseupnsols': self.__schema['phaseupnsols']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('phaseupnsols',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __hm_bandpass_inp(self): description = 'Bandpass solution heuristics' value = self.__hm_bandpass( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'hm_bandpass': value},{'hm_bandpass': self.__schema['hm_bandpass']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output('\x1B[1m\x1B[47m%-17.17s =\x1B[0m %s%-23s%s' % ('hm_bandpass',pre,self.__to_string_(value),post),description,13+len(pre)+len(post)) def __solint_inp(self): if self.__solint_dflt( self.__globals_( ) ) is not None: description = 'Solution intervals' value = self.__solint( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'solint': value},{'solint': self.__schema['solint']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('solint',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __maxchannels_inp(self): if self.__maxchannels_dflt( self.__globals_( ) ) is not None: description = 'The smoothing factor in channels' value = self.__maxchannels( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'maxchannels': value},{'maxchannels': self.__schema['maxchannels']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('maxchannels',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __evenbpints_inp(self): if self.__evenbpints_dflt( self.__globals_( ) ) is not None: description = 'Force frequency solint to even bandpass intervals' value = self.__evenbpints( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'evenbpints': value},{'evenbpints': self.__schema['evenbpints']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('evenbpints',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __bpsnr_inp(self): if self.__bpsnr_dflt( self.__globals_( ) ) is not None: description = 'SNR for bandpass solution' value = self.__bpsnr( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'bpsnr': value},{'bpsnr': self.__schema['bpsnr']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('bpsnr',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __minbpsnr_inp(self): if self.__minbpsnr_dflt( self.__globals_( ) ) is not None: description = 'Minimum SNR for bandpass frequency solution when strong atmospheric lines exist in Tsys spectra' value = self.__minbpsnr( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'minbpsnr': value},{'minbpsnr': self.__schema['minbpsnr']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('minbpsnr',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __bpnsols_inp(self): if self.__bpnsols_dflt( self.__globals_( ) ) is not None: description = 'Minimum number of bandpass solutions' value = self.__bpnsols( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'bpnsols': value},{'bpnsols': self.__schema['bpnsols']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('bpnsols',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __combine_inp(self): if self.__combine_dflt( self.__globals_( ) ) is not None: description = 'Data axes which to combine for solve (scan, spw, and/or field)' value = self.__combine( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'combine': value},{'combine': self.__schema['combine']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('combine',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __refant_inp(self): if self.__refant_dflt( self.__globals_( ) ) is not None: description = 'List of reference antenna names' value = self.__refant( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'refant': value},{'refant': self.__schema['refant']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('refant',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __minblperant_inp(self): if self.__minblperant_dflt( self.__globals_( ) ) is not None: description = 'Minimum baselines per antenna required for solve' value = self.__minblperant( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'minblperant': value},{'minblperant': self.__schema['minblperant']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('minblperant',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __minsnr_inp(self): if self.__minsnr_dflt( self.__globals_( ) ) is not None: description = 'Solutions below this SNR are rejected' value = self.__minsnr( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'minsnr': value},{'minsnr': self.__schema['minsnr']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('minsnr',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __solnorm_inp(self): if self.__solnorm_dflt( self.__globals_( ) ) is not None: description = 'Normalise the bandpass solution' value = self.__solnorm( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'solnorm': value},{'solnorm': self.__schema['solnorm']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('solnorm',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __antnegsig_inp(self): if self.__antnegsig_dflt( self.__globals_( ) ) is not None: description = 'Lower sigma threshold for identifying outliers as a result of bad antennas within individual timestamps.' value = self.__antnegsig( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'antnegsig': value},{'antnegsig': self.__schema['antnegsig']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('antnegsig',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __antpossig_inp(self): if self.__antpossig_dflt( self.__globals_( ) ) is not None: description = 'Upper sigma threshold for identifying outliers as a result of bad antennas within individual timestamps.' value = self.__antpossig( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'antpossig': value},{'antpossig': self.__schema['antpossig']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('antpossig',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __tmantint_inp(self): if self.__tmantint_dflt( self.__globals_( ) ) is not None: description = 'Threshold for maximum fraction of timestamps that are allowed to contain outliers.' value = self.__tmantint( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'tmantint': value},{'tmantint': self.__schema['tmantint']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('tmantint',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __tmint_inp(self): if self.__tmint_dflt( self.__globals_( ) ) is not None: description = 'Initial threshold for maximum fraction of \'outlier timestamps\' over \'total timestamps\' that a baseline may be a part of.' value = self.__tmint( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'tmint': value},{'tmint': self.__schema['tmint']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('tmint',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __tmbl_inp(self): if self.__tmbl_dflt( self.__globals_( ) ) is not None: description = 'Initial threshold for maximum fraction of \'bad baselines\' over \'all baselines\' that an antenna may be a part of.' value = self.__tmbl( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'tmbl': value},{'tmbl': self.__schema['tmbl']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('tmbl',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __antblnegsig_inp(self): if self.__antblnegsig_dflt( self.__globals_( ) ) is not None: description = 'Lower sigma threshold for identifying outliers as a result of \'bad baselines\' and/or \'bad antennas\' within baselines (across all timestamps).' value = self.__antblnegsig( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'antblnegsig': value},{'antblnegsig': self.__schema['antblnegsig']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('antblnegsig',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __antblpossig_inp(self): if self.__antblpossig_dflt( self.__globals_( ) ) is not None: description = 'Upper sigma threshold for identifying outliers as a result of \'bad baselines\' and/or \'bad antennas\' within baselines (across all timestamps).' value = self.__antblpossig( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'antblpossig': value},{'antblpossig': self.__schema['antblpossig']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('antblpossig',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __relaxed_factor_inp(self): if self.__relaxed_factor_dflt( self.__globals_( ) ) is not None: description = 'Relaxed value to set the threshold scaling factor to under certain conditions (see task description).' value = self.__relaxed_factor( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'relaxed_factor': value},{'relaxed_factor': self.__schema['relaxed_factor']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('relaxed_factor',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __niter_inp(self): if self.__niter_dflt( self.__globals_( ) ) is not None: description = 'Maximum number of times to iterate on evaluation of flagging heuristics.' value = self.__niter( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'niter': value},{'niter': self.__schema['niter']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('niter',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __pipelinemode_inp(self): description = 'The pipeline operation mode' value = self.__pipelinemode( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'pipelinemode': value},{'pipelinemode': self.__schema['pipelinemode']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output('\x1B[1m\x1B[47m%-17.17s =\x1B[0m %s%-23s%s' % ('pipelinemode',pre,self.__to_string_(value),post),description,13+len(pre)+len(post)) def __dryrun_inp(self): if self.__dryrun_dflt( self.__globals_( ) ) is not None: description = 'Run the task (False) or list commands (True)' value = self.__dryrun( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'dryrun': value},{'dryrun': self.__schema['dryrun']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('dryrun',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) def __acceptresults_inp(self): if self.__acceptresults_dflt( self.__globals_( ) ) is not None: description = 'Automatically accept results into context' value = self.__acceptresults( self.__globals_( ) ) (pre,post) = ('','') if self.__validate_({'acceptresults': value},{'acceptresults': self.__schema['acceptresults']}) else ('\x1B[91m','\x1B[0m') self.__do_inp_output(' \x1B[92m%-14.14s =\x1B[0m %s%-23s%s' % ('acceptresults',pre,self.__to_string_(value),post),description,9+len(pre)+len(post)) #--------- global default implementation------------------------------------------- @static_var('state', __sf__('casa_inp_go_state')) def set_global_defaults(self): self.set_global_defaults.state['last'] = self glb = self.__globals_( ) if 'antenna' in glb: del glb['antenna'] if 'phaseupbw' in glb: del glb['phaseupbw'] if 'dryrun' in glb: del glb['dryrun'] if 'antblnegsig' in glb: del glb['antblnegsig'] if 'phaseupnsols' in glb: del glb['phaseupnsols'] if 'tmbl' in glb: del glb['tmbl'] if 'field' in glb: del glb['field'] if 'pipelinemode' in glb: del glb['pipelinemode'] if 'minbpsnr' in glb: del glb['minbpsnr'] if 'intent' in glb: del glb['intent'] if 'antpossig' in glb: del glb['antpossig'] if 'refant' in glb: del glb['refant'] if 'tmantint' in glb: del glb['tmantint'] if 'minsnr' in glb: del glb['minsnr'] if 'phaseupsnr' in glb: del glb['phaseupsnr'] if 'vis' in glb: del glb['vis'] if 'acceptresults' in glb: del glb['acceptresults'] if 'minblperant' in glb: del glb['minblperant'] if 'tmint' in glb: del glb['tmint'] if 'solnorm' in glb: del glb['solnorm'] if 'relaxed_factor' in glb: del glb['relaxed_factor'] if 'maxchannels' in glb: del glb['maxchannels'] if 'phaseupsolint' in glb: del glb['phaseupsolint'] if 'combine' in glb: del glb['combine'] if 'bpsnr' in glb: del glb['bpsnr'] if 'niter' in glb: del glb['niter'] if 'bpnsols' in glb: del glb['bpnsols'] if 'hm_phaseup' in glb: del glb['hm_phaseup'] if 'solint' in glb: del glb['solint'] if 'evenbpints' in glb: del glb['evenbpints'] if 'caltable' in glb: del glb['caltable'] if 'hm_bandpass' in glb: del glb['hm_bandpass'] if 'antnegsig' in glb: del glb['antnegsig'] if 'spw' in glb: del glb['spw'] if 'antblpossig' in glb: del glb['antblpossig'] #--------- inp function ----------------------------------------------------------- def inp(self): print("# hifa_bandpassflag -- %s" % self._info_desc_) self.term_width, self.term_height = shutil.get_terminal_size(fallback=(80, 24)) self.__vis_inp( ) self.__caltable_inp( ) self.__intent_inp( ) self.__field_inp( ) self.__spw_inp( ) self.__antenna_inp( ) self.__hm_phaseup_inp( ) self.__phaseupsolint_inp( ) self.__phaseupbw_inp( ) self.__phaseupsnr_inp( ) self.__phaseupnsols_inp( ) self.__hm_bandpass_inp( ) self.__solint_inp( ) self.__maxchannels_inp( ) self.__evenbpints_inp( ) self.__bpsnr_inp( ) self.__minbpsnr_inp( ) self.__bpnsols_inp( ) self.__combine_inp( ) self.__refant_inp( ) self.__minblperant_inp( ) self.__minsnr_inp( ) self.__solnorm_inp( ) self.__antnegsig_inp( ) self.__antpossig_inp( ) self.__tmantint_inp( ) self.__tmint_inp( ) self.__tmbl_inp( ) self.__antblnegsig_inp( ) self.__antblpossig_inp( ) self.__relaxed_factor_inp( ) self.__niter_inp( ) self.__pipelinemode_inp( ) self.__dryrun_inp( ) self.__acceptresults_inp( ) #--------- tget function ---------------------------------------------------------- @static_var('state', __sf__('casa_inp_go_state')) def tget(self,file=None): from casashell.private.stack_manip import find_frame from runpy import run_path filename = None if file is None: if os.path.isfile("hifa_bandpassflag.last"): filename = "hifa_bandpassflag.last" elif isinstance(file, str): if os.path.isfile(file): filename = file if filename is not None: glob = find_frame( ) newglob = run_path( filename, init_globals={ } ) for i in newglob: glob[i] = newglob[i] self.tget.state['last'] = self else: print("could not find last file, setting defaults instead...") self.set_global_defaults( ) def __call__( self, vis=None, caltable=None, intent=None, field=None, spw=None, antenna=None, hm_phaseup=None, phaseupsolint=None, phaseupbw=None, phaseupsnr=None, phaseupnsols=None, hm_bandpass=None, solint=None, maxchannels=None, evenbpints=None, bpsnr=None, minbpsnr=None, bpnsols=None, combine=None, refant=None, minblperant=None, minsnr=None, solnorm=None, antnegsig=None, antpossig=None, tmantint=None, tmint=None, tmbl=None, antblnegsig=None, antblpossig=None, relaxed_factor=None, niter=None, pipelinemode=None, dryrun=None, acceptresults=None ): def noobj(s): if s.startswith('<') and s.endswith('>'): return "None" else: return s _prefile = os.path.realpath('hifa_bandpassflag.pre') _postfile = os.path.realpath('hifa_bandpassflag.last') _return_result_ = None _arguments = [vis,caltable,intent,field,spw,antenna,hm_phaseup,phaseupsolint,phaseupbw,phaseupsnr,phaseupnsols,hm_bandpass,solint,maxchannels,evenbpints,bpsnr,minbpsnr,bpnsols,combine,refant,minblperant,minsnr,solnorm,antnegsig,antpossig,tmantint,tmint,tmbl,antblnegsig,antblpossig,relaxed_factor,niter,pipelinemode,dryrun,acceptresults] _invocation_parameters = OrderedDict( ) if any(map(lambda x: x is not None,_arguments)): # invoke python style # set the non sub-parameters that are not None local_global = { } if hm_phaseup is not None: local_global['hm_phaseup'] = hm_phaseup if hm_bandpass is not None: local_global['hm_bandpass'] = hm_bandpass if pipelinemode is not None: local_global['pipelinemode'] = pipelinemode # the invocation parameters for the non-subparameters can now be set - this picks up those defaults _invocation_parameters['hm_phaseup'] = self.__hm_phaseup( local_global ) _invocation_parameters['hm_bandpass'] = self.__hm_bandpass( local_global ) _invocation_parameters['pipelinemode'] = self.__pipelinemode( local_global ) # the sub-parameters can then be set. Use the supplied value if not None, else the function, which gets the appropriate default _invocation_parameters['vis'] = self.__vis( _invocation_parameters ) if vis is None else vis _invocation_parameters['caltable'] = self.__caltable( _invocation_parameters ) if caltable is None else caltable _invocation_parameters['intent'] = self.__intent( _invocation_parameters ) if intent is None else intent _invocation_parameters['field'] = self.__field( _invocation_parameters ) if field is None else field _invocation_parameters['spw'] = self.__spw( _invocation_parameters ) if spw is None else spw _invocation_parameters['antenna'] = self.__antenna( _invocation_parameters ) if antenna is None else antenna _invocation_parameters['phaseupsolint'] = self.__phaseupsolint( _invocation_parameters ) if phaseupsolint is None else phaseupsolint _invocation_parameters['phaseupbw'] = self.__phaseupbw( _invocation_parameters ) if phaseupbw is None else phaseupbw _invocation_parameters['phaseupsnr'] = self.__phaseupsnr( _invocation_parameters ) if phaseupsnr is None else phaseupsnr _invocation_parameters['phaseupnsols'] = self.__phaseupnsols( _invocation_parameters ) if phaseupnsols is None else phaseupnsols _invocation_parameters['solint'] = self.__solint( _invocation_parameters ) if solint is None else solint _invocation_parameters['maxchannels'] = self.__maxchannels( _invocation_parameters ) if maxchannels is None else maxchannels _invocation_parameters['evenbpints'] = self.__evenbpints( _invocation_parameters ) if evenbpints is None else evenbpints _invocation_parameters['bpsnr'] = self.__bpsnr( _invocation_parameters ) if bpsnr is None else bpsnr _invocation_parameters['minbpsnr'] = self.__minbpsnr( _invocation_parameters ) if minbpsnr is None else minbpsnr _invocation_parameters['bpnsols'] = self.__bpnsols( _invocation_parameters ) if bpnsols is None else bpnsols _invocation_parameters['combine'] = self.__combine( _invocation_parameters ) if combine is None else combine _invocation_parameters['refant'] = self.__refant( _invocation_parameters ) if refant is None else refant _invocation_parameters['minblperant'] = self.__minblperant( _invocation_parameters ) if minblperant is None else minblperant _invocation_parameters['minsnr'] = self.__minsnr( _invocation_parameters ) if minsnr is None else minsnr _invocation_parameters['solnorm'] = self.__solnorm( _invocation_parameters ) if solnorm is None else solnorm _invocation_parameters['antnegsig'] = self.__antnegsig( _invocation_parameters ) if antnegsig is None else antnegsig _invocation_parameters['antpossig'] = self.__antpossig( _invocation_parameters ) if antpossig is None else antpossig _invocation_parameters['tmantint'] = self.__tmantint( _invocation_parameters ) if tmantint is None else tmantint _invocation_parameters['tmint'] = self.__tmint( _invocation_parameters ) if tmint is None else tmint _invocation_parameters['tmbl'] = self.__tmbl( _invocation_parameters ) if tmbl is None else tmbl _invocation_parameters['antblnegsig'] = self.__antblnegsig( _invocation_parameters ) if antblnegsig is None else antblnegsig _invocation_parameters['antblpossig'] = self.__antblpossig( _invocation_parameters ) if antblpossig is None else antblpossig _invocation_parameters['relaxed_factor'] = self.__relaxed_factor( _invocation_parameters ) if relaxed_factor is None else relaxed_factor _invocation_parameters['niter'] = self.__niter( _invocation_parameters ) if niter is None else niter _invocation_parameters['dryrun'] = self.__dryrun( _invocation_parameters ) if dryrun is None else dryrun _invocation_parameters['acceptresults'] = self.__acceptresults( _invocation_parameters ) if acceptresults is None else acceptresults else: # invoke with inp/go semantics _invocation_parameters['vis'] = self.__vis( self.__globals_( ) ) _invocation_parameters['caltable'] = self.__caltable( self.__globals_( ) ) _invocation_parameters['intent'] = self.__intent( self.__globals_( ) ) _invocation_parameters['field'] = self.__field( self.__globals_( ) ) _invocation_parameters['spw'] = self.__spw( self.__globals_( ) ) _invocation_parameters['antenna'] = self.__antenna( self.__globals_( ) ) _invocation_parameters['hm_phaseup'] = self.__hm_phaseup( self.__globals_( ) ) _invocation_parameters['phaseupsolint'] = self.__phaseupsolint( self.__globals_( ) ) _invocation_parameters['phaseupbw'] = self.__phaseupbw( self.__globals_( ) ) _invocation_parameters['phaseupsnr'] = self.__phaseupsnr( self.__globals_( ) ) _invocation_parameters['phaseupnsols'] = self.__phaseupnsols( self.__globals_( ) ) _invocation_parameters['hm_bandpass'] = self.__hm_bandpass( self.__globals_( ) ) _invocation_parameters['solint'] = self.__solint( self.__globals_( ) ) _invocation_parameters['maxchannels'] = self.__maxchannels( self.__globals_( ) ) _invocation_parameters['evenbpints'] = self.__evenbpints( self.__globals_( ) ) _invocation_parameters['bpsnr'] = self.__bpsnr( self.__globals_( ) ) _invocation_parameters['minbpsnr'] = self.__minbpsnr( self.__globals_( ) ) _invocation_parameters['bpnsols'] = self.__bpnsols( self.__globals_( ) ) _invocation_parameters['combine'] = self.__combine( self.__globals_( ) ) _invocation_parameters['refant'] = self.__refant( self.__globals_( ) ) _invocation_parameters['minblperant'] = self.__minblperant( self.__globals_( ) ) _invocation_parameters['minsnr'] = self.__minsnr( self.__globals_( ) ) _invocation_parameters['solnorm'] = self.__solnorm( self.__globals_( ) ) _invocation_parameters['antnegsig'] = self.__antnegsig( self.__globals_( ) ) _invocation_parameters['antpossig'] = self.__antpossig( self.__globals_( ) ) _invocation_parameters['tmantint'] = self.__tmantint( self.__globals_( ) ) _invocation_parameters['tmint'] = self.__tmint( self.__globals_( ) ) _invocation_parameters['tmbl'] = self.__tmbl( self.__globals_( ) ) _invocation_parameters['antblnegsig'] = self.__antblnegsig( self.__globals_( ) ) _invocation_parameters['antblpossig'] = self.__antblpossig( self.__globals_( ) ) _invocation_parameters['relaxed_factor'] = self.__relaxed_factor( self.__globals_( ) ) _invocation_parameters['niter'] = self.__niter( self.__globals_( ) ) _invocation_parameters['pipelinemode'] = self.__pipelinemode( self.__globals_( ) ) _invocation_parameters['dryrun'] = self.__dryrun( self.__globals_( ) ) _invocation_parameters['acceptresults'] = self.__acceptresults( self.__globals_( ) ) try: with open(_prefile,'w') as _f: for _i in _invocation_parameters: _f.write("%-14s = %s\n" % (_i,noobj(repr(_invocation_parameters[_i])))) _f.write("#hifa_bandpassflag( ") count = 0 for _i in _invocation_parameters: _f.write("%s=%s" % (_i,noobj(repr(_invocation_parameters[_i])))) count += 1 if count < len(_invocation_parameters): _f.write(",") _f.write(" )\n") except: pass try: _return_result_ = _hifa_bandpassflag_t( _invocation_parameters['vis'],_invocation_parameters['caltable'],_invocation_parameters['intent'],_invocation_parameters['field'],_invocation_parameters['spw'],_invocation_parameters['antenna'],_invocation_parameters['hm_phaseup'],_invocation_parameters['phaseupsolint'],_invocation_parameters['phaseupbw'],_invocation_parameters['phaseupsnr'],_invocation_parameters['phaseupnsols'],_invocation_parameters['hm_bandpass'],_invocation_parameters['solint'],_invocation_parameters['maxchannels'],_invocation_parameters['evenbpints'],_invocation_parameters['bpsnr'],_invocation_parameters['minbpsnr'],_invocation_parameters['bpnsols'],_invocation_parameters['combine'],_invocation_parameters['refant'],_invocation_parameters['minblperant'],_invocation_parameters['minsnr'],_invocation_parameters['solnorm'],_invocation_parameters['antnegsig'],_invocation_parameters['antpossig'],_invocation_parameters['tmantint'],_invocation_parameters['tmint'],_invocation_parameters['tmbl'],_invocation_parameters['antblnegsig'],_invocation_parameters['antblpossig'],_invocation_parameters['relaxed_factor'],_invocation_parameters['niter'],_invocation_parameters['pipelinemode'],_invocation_parameters['dryrun'],_invocation_parameters['acceptresults'] ) except Exception as e: from traceback import format_exc from casatasks import casalog casalog.origin('hifa_bandpassflag') casalog.post("Exception Reported: Error in hifa_bandpassflag: %s" % str(e),'SEVERE') casalog.post(format_exc( )) _return_result_ = False try: os.rename(_prefile,_postfile) except: pass return _return_result_ hifa_bandpassflag = _hifa_bandpassflag( )