##################### generated by xml-casa (v2) from hifa_gfluxscale.xml ###########
##################### 14474d323db3bbc71601c88c1026f415 ##############################
from __future__ import absolute_import
from casashell.private.stack_manip import find_local as __sf__
from casashell.private.stack_manip import find_frame as _find_frame
from casatools.typecheck import validator as _pc
from casatools.coercetype import coerce as _coerce
from pipeline.hifa.cli import hifa_gfluxscale as _hifa_gfluxscale_t
from collections import OrderedDict
import numpy
import sys
import os
import shutil
[docs]def static_var(varname, value):
def decorate(func):
setattr(func, varname, value)
return func
return decorate
class _hifa_gfluxscale:
"""
hifa_gfluxscale ---- Derive flux density scales from standard calibrators
Derive flux densities for point source transfer calibrators using flux models
for reference calibrators.
Flux values are determined by:
o computing complex gain phase only solutions for all the science spectral
windows using the calibrator data selected by the 'reference' and
'refintent' parameters and the 'transfer' and 'transintent' parameters,
and the value of the 'phaseupsolint' parameter.
o computing complex amplitude only solutions for all the science spectral
windows using calibrator data selected with 'reference' and 'refintent'
parameters and the 'transfer' and 'transintent' parameters, the value
of the 'solint' parameter.
o transferring the flux scale from the reference calibrators to the transfer
calibrators using refspwmap for windows without data in the reference
calibrators
o extracted the computed flux values from the CASA logs and inserting
them into the MODEL_DATA column.
Resolved calibrators are handled via antenna selection either automatically,
hm_resolvedcals='automatic' or manually, hm_resolvedcals='manual'. In
the former case antennas closer to the reference antenna than the uv
distance where visibilities fall to 'peak_fraction' of the peak are used.
In manual mode the antennas specified in 'antenna' are used.
Note that the flux corrected calibration table computed internally is
not currently used in later pipeline apply calibration steps.
Issues
Should we add a spw window selection option here?
The code which extracts the flux scales from the logs needs to be replaced
with code which uses the values returned from the CASA fluxscale task.
--------- parameter descriptions ---------------------------------------------
vis The list of input MeasurementSets. Defaults to the list of MeasurementSets
specified in the pipeline context
example: ['M32A.ms', 'M32B.ms']
reference A string containing a comma delimited list of field names
defining the reference calibrators. Defaults to field names with
intent '*AMP*'.
example: reference='M82,3C273'
transfer A string containing a comma delimited list of field names
defining the transfer calibrators. Defaults to field names with
intent '*PHASE*'.
example: transfer='J1328+041,J1206+30'
refintent A string containing a comma delimited list of intents
used to select the reference calibrators. Defaults to 'AMPLITUDE'.
example: refintent='', refintent='AMPLITUDE'
transintent A string containing a comma delimited list of intents
defining the transfer calibrators. Defaults to
'PHASE,BANDPASS,CHECK,POLARIZATION,POLANGLE,POLLEAKAGE'.
example: transintent='', transintent='PHASE,BANDPASS'
refspwmap Vector of spectral window ids enabling scaling across
spectral windows. Defaults to no scaling.
example: refspwmap=[1,1,3,3] - (4 spws, reference fields in 1 and 3, transfer
fields in 0,1,2,3
reffile Path to a file containing flux densities for calibrators unknown to
CASA. Values given in this file take precedence over the CASA-derived
values for all calibrators except solar system calibrators. By default the
path is set to the CSV file created by hifa_importdata, consisting of
catalogue fluxes extracted from the ASDM and / or edited by the user.
example: reffile='', reffile='working/flux.csv'
phaseupsolint Time solution intervals in CASA syntax for the phase solution.
example: phaseupsolint='inf', phaseupsolint='int', phaseupsolint='100sec'
solint Time solution intervals in CASA syntax for the amplitude solution.
example: solint='inf', solint='int', solint='100sec'
minsnr Minimum signal to noise ratio for gain calibration solutions.
example: minsnr=1.5, minsnr=0.0
refant A string specifying the reference antenna(s). By default this is read
from the context.
example: refant='DV05'
hm_resolvedcals Heuristics method for handling resolved calibrators. The
options are 'automatic' and 'manual'. In automatic mode antennas closer
to the reference antenna than the uv distance where visibilities fall to
'peak_fraction' of the peak are used. In manual mode the antennas specified
in 'antenna' are used.
antenna A comma delimited string specifying the antenna names or ids to be
used for the fluxscale determination. Used in hm_resolvedcals='manual' mode.
example: antenna='DV16,DV07,DA12,DA08'
peak_fraction The limiting UV distance from the reference antenna for antennas
to be included in the flux calibration. Defined as the point where the
calibrator visibilities have fallen to 'peak_fraction' of the peak value.
pipelinemode The pipeline operating mode. In 'automatic' mode the pipeline
determines the values of all context defined pipeline inputs automatically.
In interactive mode the user can set the pipeline context defined
parameters manually. In 'getinputs' mode the users can check the settings
of all pipeline parameters without running the task.
dryrun Run the commands (True) or generate the commands to be run but do not
execute (False).
acceptresults Add the results of the task to the pipeline context (True) or
reject them (False).
--------- examples -----------------------------------------------------------
1. Compute flux values for the phase calibrator using model data from
the amplitude calibrator:
hifa_gfluxscale()
"""
_info_group_ = """pipeline"""
_info_desc_ = """Derive flux density scales from standard calibrators"""
__schema = {'vis': {'type': 'cStr', 'coerce': _coerce.to_str}, 'reference': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'transfer': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'refintent': {'type': 'cStr', 'coerce': _coerce.to_str}, 'transintent': {'type': 'cStr', 'coerce': _coerce.to_str}, 'refspwmap': {'type': 'cIntVec', 'coerce': [_coerce.to_list,_coerce.to_intvec]}, 'reffile': {'type': 'cStr', 'coerce': _coerce.to_str}, 'phaseupsolint': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'solint': {'type': 'cVariant', 'coerce': [_coerce.to_variant]}, 'minsnr': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'refant': {'type': 'cStr', 'coerce': _coerce.to_str}, 'hm_resolvedcals': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'automatic', 'manual' ]}, 'antenna': {'type': 'cStr', 'coerce': _coerce.to_str}, 'peak_fraction': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'pipelinemode': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'automatic', 'interactive', 'getinputs' ]}, 'dryrun': {'type': 'cBool'}, 'acceptresults': {'type': 'cBool'}}
def __init__(self):
self.__stdout = None
self.__stderr = None
self.__root_frame_ = None
def __globals_(self):
if self.__root_frame_ is None:
self.__root_frame_ = _find_frame( )
assert self.__root_frame_ is not None, "could not find CASAshell global frame"
return self.__root_frame_
def __to_string_(self,value):
if type(value) is str:
return "'%s'" % value
else:
return str(value)
def __validate_(self,doc,schema):
return _pc.validate(doc,schema)
def __do_inp_output(self,param_prefix,description_str,formatting_chars):
out = self.__stdout or sys.stdout
description = description_str.split( )
prefix_width = 23 + 16 + 4
output = [ ]
addon = ''
first_addon = True
while len(description) > 0:
## starting a new line.....................................................................
if len(output) == 0:
## for first line add parameter information............................................
if len(param_prefix)-formatting_chars > prefix_width - 1:
output.append(param_prefix)
continue
addon = param_prefix + ' #'
first_addon = True
addon_formatting = formatting_chars
else:
## for subsequent lines space over prefix width........................................
addon = (' ' * prefix_width) + '#'
first_addon = False
addon_formatting = 0
## if first word of description puts us over the screen width, bail........................
if len(addon + description[0]) - addon_formatting + 1 > self.term_width:
## if we're doing the first line make sure it's output.................................
if first_addon: output.append(addon)
break
while len(description) > 0:
## if the next description word puts us over break for the next line...................
if len(addon + description[0]) - addon_formatting + 1 > self.term_width: break
addon = addon + ' ' + description[0]
description.pop(0)
output.append(addon)
out.write('\n'.join(output) + '\n')
#--------- return nonsubparam values ----------------------------------------------
def __solint_dflt( self, glb ):
return 'inf'
def __solint( self, glb ):
if 'solint' in glb: return glb['solint']
return 'inf'
def __phaseupsolint_dflt( self, glb ):
return 'int'
def __phaseupsolint( self, glb ):
if 'phaseupsolint' in glb: return glb['phaseupsolint']
return 'int'
def __pipelinemode_dflt( self, glb ):
return 'automatic'
def __pipelinemode( self, glb ):
if 'pipelinemode' in glb: return glb['pipelinemode']
return 'automatic'
def __minsnr_dflt( self, glb ):
return float(2.0)
def __minsnr( self, glb ):
if 'minsnr' in glb: return glb['minsnr']
return float(2.0)
#--------- return non subparam/when values ---------------------------------------------
def __hm_resolvedcals( self, glb ):
if 'hm_resolvedcals' in glb: return glb['hm_resolvedcals']
return 'automatic'
#--------- return inp/go default --------------------------------------------------
def __antenna_dflt( self, glb ):
if self.__hm_resolvedcals( glb ) == "manual": return ""
return None
def __reference_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return { }
if self.__pipelinemode( glb ) == "getinputs": return { }
return None
def __dryrun_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return bool(False)
return None
def __peak_fraction_dflt( self, glb ):
if self.__hm_resolvedcals( glb ) == "automatic": return float(0.2)
return None
def __transintent_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return ""
if self.__pipelinemode( glb ) == "getinputs": return ""
return None
def __refant_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return ""
if self.__pipelinemode( glb ) == "getinputs": return ""
return None
def __vis_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return ""
if self.__pipelinemode( glb ) == "getinputs": return ""
return None
def __acceptresults_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return bool(True)
return None
def __refintent_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return ""
if self.__pipelinemode( glb ) == "getinputs": return ""
return None
def __transfer_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return { }
if self.__pipelinemode( glb ) == "getinputs": return { }
return None
def __refspwmap_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return []
if self.__pipelinemode( glb ) == "getinputs": return []
return None
def __hm_resolvedcals_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return "automatic"
if self.__pipelinemode( glb ) == "getinputs": return "automatic"
return None
def __reffile_dflt( self, glb ):
if self.__pipelinemode( glb ) == "interactive": return ""
if self.__pipelinemode( glb ) == "getinputs": return ""
return None
#--------- return subparam values -------------------------------------------------
def __vis( self, glb ):
if 'vis' in glb: return glb['vis']
dflt = self.__vis_dflt( glb )
if dflt is not None: return dflt
return ''
def __reference( self, glb ):
if 'reference' in glb: return glb['reference']
dflt = self.__reference_dflt( glb )
if dflt is not None: return dflt
return ''
def __transfer( self, glb ):
if 'transfer' in glb: return glb['transfer']
dflt = self.__transfer_dflt( glb )
if dflt is not None: return dflt
return ''
def __refintent( self, glb ):
if 'refintent' in glb: return glb['refintent']
dflt = self.__refintent_dflt( glb )
if dflt is not None: return dflt
return ''
def __transintent( self, glb ):
if 'transintent' in glb: return glb['transintent']
dflt = self.__transintent_dflt( glb )
if dflt is not None: return dflt
return ''
def __refspwmap( self, glb ):
if 'refspwmap' in glb: return glb['refspwmap']
dflt = self.__refspwmap_dflt( glb )
if dflt is not None: return dflt
return [ ]
def __reffile( self, glb ):
if 'reffile' in glb: return glb['reffile']
dflt = self.__reffile_dflt( glb )
if dflt is not None: return dflt
return ''
def __refant( self, glb ):
if 'refant' in glb: return glb['refant']
dflt = self.__refant_dflt( glb )
if dflt is not None: return dflt
return ''
def __antenna( self, glb ):
if 'antenna' in glb: return glb['antenna']
dflt = self.__antenna_dflt( glb )
if dflt is not None: return dflt
return ''
def __peak_fraction( self, glb ):
if 'peak_fraction' in glb: return glb['peak_fraction']
dflt = self.__peak_fraction_dflt( glb )
if dflt is not None: return dflt
return float(0.2)
def __dryrun( self, glb ):
if 'dryrun' in glb: return glb['dryrun']
dflt = self.__dryrun_dflt( glb )
if dflt is not None: return dflt
return False
def __acceptresults( self, glb ):
if 'acceptresults' in glb: return glb['acceptresults']
dflt = self.__acceptresults_dflt( glb )
if dflt is not None: return dflt
return True
#--------- subparam inp output ----------------------------------------------------
def __vis_inp(self):
if self.__vis_dflt( self.__globals_( ) ) is not None:
description = 'List of input MeasurementSets'
value = self.__vis( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'vis': value},{'vis': self.__schema['vis']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('vis',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __reference_inp(self):
if self.__reference_dflt( self.__globals_( ) ) is not None:
description = 'Reference calibrator field name(s)'
value = self.__reference( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'reference': value},{'reference': self.__schema['reference']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('reference',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __transfer_inp(self):
if self.__transfer_dflt( self.__globals_( ) ) is not None:
description = 'Transfer calibrator field name(s)'
value = self.__transfer( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'transfer': value},{'transfer': self.__schema['transfer']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('transfer',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __refintent_inp(self):
if self.__refintent_dflt( self.__globals_( ) ) is not None:
description = 'Observing intent of reference fields'
value = self.__refintent( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'refintent': value},{'refintent': self.__schema['refintent']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('refintent',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __transintent_inp(self):
if self.__transintent_dflt( self.__globals_( ) ) is not None:
description = 'Observing intent of transfer fields'
value = self.__transintent( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'transintent': value},{'transintent': self.__schema['transintent']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('transintent',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __refspwmap_inp(self):
if self.__refspwmap_dflt( self.__globals_( ) ) is not None:
description = 'Map across spectral window boundaries'
value = self.__refspwmap( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'refspwmap': value},{'refspwmap': self.__schema['refspwmap']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('refspwmap',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __reffile_inp(self):
if self.__reffile_dflt( self.__globals_( ) ) is not None:
description = 'Path to file with fluxes for non-solar system calibrators'
value = self.__reffile( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'reffile': value},{'reffile': self.__schema['reffile']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('reffile',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __phaseupsolint_inp(self):
description = 'Phaseup correction solution interval'
value = self.__phaseupsolint( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'phaseupsolint': value},{'phaseupsolint': self.__schema['phaseupsolint']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output('%-16.16s = %s%-23s%s' % ('phaseupsolint',pre,self.__to_string_(value),post),description,0+len(pre)+len(post))
def __solint_inp(self):
description = 'Amplitude correction solution interval'
value = self.__solint( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'solint': value},{'solint': self.__schema['solint']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output('%-16.16s = %s%-23s%s' % ('solint',pre,self.__to_string_(value),post),description,0+len(pre)+len(post))
def __minsnr_inp(self):
description = 'Minimum SNR for gain solutions'
value = self.__minsnr( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'minsnr': value},{'minsnr': self.__schema['minsnr']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output('%-16.16s = %s%-23s%s' % ('minsnr',pre,self.__to_string_(value),post),description,0+len(pre)+len(post))
def __refant_inp(self):
if self.__refant_dflt( self.__globals_( ) ) is not None:
description = 'The name or ID of the reference antenna'
value = self.__refant( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'refant': value},{'refant': self.__schema['refant']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('refant',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __hm_resolvedcals_inp(self):
description = 'The resolved calibrators heuristics method'
value = self.__hm_resolvedcals( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'hm_resolvedcals': value},{'hm_resolvedcals': self.__schema['hm_resolvedcals']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output('\x1B[1m\x1B[47m%-16.16s =\x1B[0m %s%-23s%s' % ('hm_resolvedcals',pre,self.__to_string_(value),post),description,13+len(pre)+len(post))
def __antenna_inp(self):
if self.__antenna_dflt( self.__globals_( ) ) is not None:
description = 'Antennas to be used in fluxscale'
value = self.__antenna( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'antenna': value},{'antenna': self.__schema['antenna']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('antenna',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __peak_fraction_inp(self):
if self.__peak_fraction_dflt( self.__globals_( ) ) is not None:
description = 'Fraction of peak visibility at uv-distance limit of antennas to be used'
value = self.__peak_fraction( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'peak_fraction': value},{'peak_fraction': self.__schema['peak_fraction']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('peak_fraction',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __pipelinemode_inp(self):
description = 'The pipeline operating mode'
value = self.__pipelinemode( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'pipelinemode': value},{'pipelinemode': self.__schema['pipelinemode']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output('\x1B[1m\x1B[47m%-16.16s =\x1B[0m %s%-23s%s' % ('pipelinemode',pre,self.__to_string_(value),post),description,13+len(pre)+len(post))
def __dryrun_inp(self):
if self.__dryrun_dflt( self.__globals_( ) ) is not None:
description = 'Run the task (False) or display commands (True)'
value = self.__dryrun( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'dryrun': value},{'dryrun': self.__schema['dryrun']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('dryrun',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
def __acceptresults_inp(self):
if self.__acceptresults_dflt( self.__globals_( ) ) is not None:
description = 'Automatically accept results into context'
value = self.__acceptresults( self.__globals_( ) )
(pre,post) = ('','') if self.__validate_({'acceptresults': value},{'acceptresults': self.__schema['acceptresults']}) else ('\x1B[91m','\x1B[0m')
self.__do_inp_output(' \x1B[92m%-13.13s =\x1B[0m %s%-23s%s' % ('acceptresults',pre,self.__to_string_(value),post),description,9+len(pre)+len(post))
#--------- global default implementation-------------------------------------------
@static_var('state', __sf__('casa_inp_go_state'))
def set_global_defaults(self):
self.set_global_defaults.state['last'] = self
glb = self.__globals_( )
if 'antenna' in glb: del glb['antenna']
if 'reference' in glb: del glb['reference']
if 'dryrun' in glb: del glb['dryrun']
if 'peak_fraction' in glb: del glb['peak_fraction']
if 'pipelinemode' in glb: del glb['pipelinemode']
if 'transintent' in glb: del glb['transintent']
if 'refant' in glb: del glb['refant']
if 'minsnr' in glb: del glb['minsnr']
if 'vis' in glb: del glb['vis']
if 'acceptresults' in glb: del glb['acceptresults']
if 'refintent' in glb: del glb['refintent']
if 'transfer' in glb: del glb['transfer']
if 'refspwmap' in glb: del glb['refspwmap']
if 'phaseupsolint' in glb: del glb['phaseupsolint']
if 'hm_resolvedcals' in glb: del glb['hm_resolvedcals']
if 'solint' in glb: del glb['solint']
if 'reffile' in glb: del glb['reffile']
#--------- inp function -----------------------------------------------------------
def inp(self):
print("# hifa_gfluxscale -- %s" % self._info_desc_)
self.term_width, self.term_height = shutil.get_terminal_size(fallback=(80, 24))
self.__vis_inp( )
self.__reference_inp( )
self.__transfer_inp( )
self.__refintent_inp( )
self.__transintent_inp( )
self.__refspwmap_inp( )
self.__reffile_inp( )
self.__phaseupsolint_inp( )
self.__solint_inp( )
self.__minsnr_inp( )
self.__refant_inp( )
self.__hm_resolvedcals_inp( )
self.__antenna_inp( )
self.__peak_fraction_inp( )
self.__pipelinemode_inp( )
self.__dryrun_inp( )
self.__acceptresults_inp( )
#--------- tget function ----------------------------------------------------------
@static_var('state', __sf__('casa_inp_go_state'))
def tget(self,file=None):
from casashell.private.stack_manip import find_frame
from runpy import run_path
filename = None
if file is None:
if os.path.isfile("hifa_gfluxscale.last"):
filename = "hifa_gfluxscale.last"
elif isinstance(file, str):
if os.path.isfile(file):
filename = file
if filename is not None:
glob = find_frame( )
newglob = run_path( filename, init_globals={ } )
for i in newglob:
glob[i] = newglob[i]
self.tget.state['last'] = self
else:
print("could not find last file, setting defaults instead...")
self.set_global_defaults( )
def __call__( self, vis=None, reference=None, transfer=None, refintent=None, transintent=None, refspwmap=None, reffile=None, phaseupsolint=None, solint=None, minsnr=None, refant=None, hm_resolvedcals=None, antenna=None, peak_fraction=None, pipelinemode=None, dryrun=None, acceptresults=None ):
def noobj(s):
if s.startswith('<') and s.endswith('>'):
return "None"
else:
return s
_prefile = os.path.realpath('hifa_gfluxscale.pre')
_postfile = os.path.realpath('hifa_gfluxscale.last')
_return_result_ = None
_arguments = [vis,reference,transfer,refintent,transintent,refspwmap,reffile,phaseupsolint,solint,minsnr,refant,hm_resolvedcals,antenna,peak_fraction,pipelinemode,dryrun,acceptresults]
_invocation_parameters = OrderedDict( )
if any(map(lambda x: x is not None,_arguments)):
# invoke python style
# set the non sub-parameters that are not None
local_global = { }
if phaseupsolint is not None: local_global['phaseupsolint'] = phaseupsolint
if solint is not None: local_global['solint'] = solint
if minsnr is not None: local_global['minsnr'] = minsnr
if hm_resolvedcals is not None: local_global['hm_resolvedcals'] = hm_resolvedcals
if pipelinemode is not None: local_global['pipelinemode'] = pipelinemode
# the invocation parameters for the non-subparameters can now be set - this picks up those defaults
_invocation_parameters['phaseupsolint'] = self.__phaseupsolint( local_global )
_invocation_parameters['solint'] = self.__solint( local_global )
_invocation_parameters['minsnr'] = self.__minsnr( local_global )
_invocation_parameters['hm_resolvedcals'] = self.__hm_resolvedcals( local_global )
_invocation_parameters['pipelinemode'] = self.__pipelinemode( local_global )
# the sub-parameters can then be set. Use the supplied value if not None, else the function, which gets the appropriate default
_invocation_parameters['vis'] = self.__vis( _invocation_parameters ) if vis is None else vis
_invocation_parameters['reference'] = self.__reference( _invocation_parameters ) if reference is None else reference
_invocation_parameters['transfer'] = self.__transfer( _invocation_parameters ) if transfer is None else transfer
_invocation_parameters['refintent'] = self.__refintent( _invocation_parameters ) if refintent is None else refintent
_invocation_parameters['transintent'] = self.__transintent( _invocation_parameters ) if transintent is None else transintent
_invocation_parameters['refspwmap'] = self.__refspwmap( _invocation_parameters ) if refspwmap is None else refspwmap
_invocation_parameters['reffile'] = self.__reffile( _invocation_parameters ) if reffile is None else reffile
_invocation_parameters['refant'] = self.__refant( _invocation_parameters ) if refant is None else refant
_invocation_parameters['antenna'] = self.__antenna( _invocation_parameters ) if antenna is None else antenna
_invocation_parameters['peak_fraction'] = self.__peak_fraction( _invocation_parameters ) if peak_fraction is None else peak_fraction
_invocation_parameters['dryrun'] = self.__dryrun( _invocation_parameters ) if dryrun is None else dryrun
_invocation_parameters['acceptresults'] = self.__acceptresults( _invocation_parameters ) if acceptresults is None else acceptresults
else:
# invoke with inp/go semantics
_invocation_parameters['vis'] = self.__vis( self.__globals_( ) )
_invocation_parameters['reference'] = self.__reference( self.__globals_( ) )
_invocation_parameters['transfer'] = self.__transfer( self.__globals_( ) )
_invocation_parameters['refintent'] = self.__refintent( self.__globals_( ) )
_invocation_parameters['transintent'] = self.__transintent( self.__globals_( ) )
_invocation_parameters['refspwmap'] = self.__refspwmap( self.__globals_( ) )
_invocation_parameters['reffile'] = self.__reffile( self.__globals_( ) )
_invocation_parameters['phaseupsolint'] = self.__phaseupsolint( self.__globals_( ) )
_invocation_parameters['solint'] = self.__solint( self.__globals_( ) )
_invocation_parameters['minsnr'] = self.__minsnr( self.__globals_( ) )
_invocation_parameters['refant'] = self.__refant( self.__globals_( ) )
_invocation_parameters['hm_resolvedcals'] = self.__hm_resolvedcals( self.__globals_( ) )
_invocation_parameters['antenna'] = self.__antenna( self.__globals_( ) )
_invocation_parameters['peak_fraction'] = self.__peak_fraction( self.__globals_( ) )
_invocation_parameters['pipelinemode'] = self.__pipelinemode( self.__globals_( ) )
_invocation_parameters['dryrun'] = self.__dryrun( self.__globals_( ) )
_invocation_parameters['acceptresults'] = self.__acceptresults( self.__globals_( ) )
try:
with open(_prefile,'w') as _f:
for _i in _invocation_parameters:
_f.write("%-13s = %s\n" % (_i,noobj(repr(_invocation_parameters[_i]))))
_f.write("#hifa_gfluxscale( ")
count = 0
for _i in _invocation_parameters:
_f.write("%s=%s" % (_i,noobj(repr(_invocation_parameters[_i]))))
count += 1
if count < len(_invocation_parameters): _f.write(",")
_f.write(" )\n")
except: pass
try:
_return_result_ = _hifa_gfluxscale_t( _invocation_parameters['vis'],_invocation_parameters['reference'],_invocation_parameters['transfer'],_invocation_parameters['refintent'],_invocation_parameters['transintent'],_invocation_parameters['refspwmap'],_invocation_parameters['reffile'],_invocation_parameters['phaseupsolint'],_invocation_parameters['solint'],_invocation_parameters['minsnr'],_invocation_parameters['refant'],_invocation_parameters['hm_resolvedcals'],_invocation_parameters['antenna'],_invocation_parameters['peak_fraction'],_invocation_parameters['pipelinemode'],_invocation_parameters['dryrun'],_invocation_parameters['acceptresults'] )
except Exception as e:
from traceback import format_exc
from casatasks import casalog
casalog.origin('hifa_gfluxscale')
casalog.post("Exception Reported: Error in hifa_gfluxscale: %s" % str(e),'SEVERE')
casalog.post(format_exc( ))
_return_result_ = False
try:
os.rename(_prefile,_postfile)
except: pass
return _return_result_
hifa_gfluxscale = _hifa_gfluxscale( )