##################### generated by xml-casa (v2) from hifa_wvrgcal.xml ##############
##################### 6cb055d7c8307b96c81fab81131fe1f8 ##############################
from __future__ import absolute_import
import numpy
from casatools.typecheck import CasaValidator as _val_ctor
_pc = _val_ctor( )
from casatools.coercetype import coerce as _coerce
from .private.task_hifa_wvrgcal import hifa_wvrgcal as _hifa_wvrgcal_t
from casatasks.private.task_logging import start_log as _start_log
from casatasks.private.task_logging import end_log as _end_log
class _hifa_wvrgcal:
"""
hifa_wvrgcal ----
Generate a gain table based on Water Vapor Radiometer data, and calculate
a QA score based on its effect on the interferometric data.
Generate a gain table based on the Water Vapor Radiometer data in each vis
file. By applying the wvr calibration to the data specified by 'qa_intent' and
'qa_spw', calculate a QA score to indicate its effect on interferometric data;
a score > 1 implies that the phase noise is improved, a score < 1 implies
that it is made worse. If the score is less than 'accept_threshold' then the
wvr gain table is not accepted into the context for subsequent use.
--------- parameter descriptions ---------------------------------------------
vis List of input visibility files.
default: none, in which case the vis files to be used will be read
from the context.
example: vis=['ngc5921.ms']
caltable List of output gain calibration tables.
default: none, in which case the names of the caltables will be
generated automatically.
example: caltable='ngc5921.wvr'
offsetstable List of input temperature offsets table files to subtract from
WVR measurements before calculating phase corrections.
default: none, in which case no offsets are applied.
example: offsetstable=['ngc5921.cloud_offsets']
hm_toffset If 'manual', set the 'toffset' parameter to the user-specified value.
If 'automatic', set the 'toffset' parameter according to the
date of the MeasurementSet; toffset=-1 if before 2013-01-21T00:00:00
toffset=0 otherwise.
toffset Time offset (sec) between interferometric and WVR data.
segsource If True calculate new atmospheric phase correction coefficients
for each source, subject to the constraints of the 'tie' parameter.
'segsource' is forced to be True if the 'tie' parameter is set to a
non-empty value by the user or by the automatic heuristic.
sourceflag Flag the WVR data for these source(s) as bad and do not produce
corrections for it. Requires segsource=True.
example: ['3C273']
hm_tie If 'manual', set the 'tie' parameter to the user-specified value.
If 'automatic', set the 'tie' parameter to include with the
target all calibrators that are within 15 degrees of it:
if no calibrators are that close then 'tie' is left empty.
tie Use the same atmospheric phase correction coefficients when
calculating the wvr correction for all sources in the 'tie'. If 'tie'
is not empty then 'segsource' is forced to be True. Ignored unless
hm_tie='manual'.
example: ['3C273,NGC253', 'IC433,3C279']
nsol Number of solutions for phase correction coefficients during this
observation, evenly distributed in time throughout the observation. It
is used only if segsource=False because if segsource=True then the
coefficients are recomputed whenever the telescope moves to a new source
(within the limits imposed by 'tie').
disperse Apply correction for dispersion.
wvrflag Flag the WVR data for the listed antennas as bad and replace
their data with values interpolated from the 3 nearest antennas with
unflagged data.
example: ['DV03','DA05','PM02']
hm_smooth If 'manual' set the 'smooth' parameter to the user-specified value.
If 'automatic', run the wvrgcal task with the range of 'smooth' parameters
required to match the integration time of the wvr data to that of the
interferometric data in each spectral window.
smooth Smooth WVR data on this timescale before calculating the correction.
Ignored unless hm_smooth='manual'.
scale Scale the entire phase correction by this factor.
maxdistm Maximum distance in meters of an antenna used for interpolation
from a flagged antenna.
default: -1 (automatically set to 100m if >50% of antennas are 7m
antennas without WVR and otherwise set to 500m)
example: maxdistm=550
minnumants Minimum number of nearby antennas (up to 3) used for
interpolation from a flagged antenna.
example: minnumants=3
mingoodfrac Minimum fraction of good data per antenna.
refant Ranked comma delimited list of reference antennas.
example: refant='DV01,DV02'
qa_intent The list of data intents on which the wvr correction is to be
tried as a means of estimating its effectiveness.
A QA 'view' will be calculated for each specified intent, in each spectral
window in each vis file.
Each QA 'view' will consist of a pair of 2-d images with dimensions
['ANTENNA', 'TIME'], one showing the data phase-noise before the
wvr application, the second showing the phase noise after (both 'before'
and 'after' images have a bandpass calibration applied as well).
An overall QA score is calculated for each vis file, by dividing the
'before' images by the 'after' and taking the median of the result. An
overall score of 1 would correspond to no change in the phase noise,
a score > 1 implies an improvement.
If the overall score for a vis file is less than the value in
'accept_threshold' then the wvr calibration file is not made available
for merging into the context for use in the subsequent reduction.
If you do not want any QA calculations then set qa_intent=''.
example: qa_intent='PHASE'
qa_bandpass_intent The data intent to use for the bandpass calibration in
the qa calculation. The default is blank to allow the underlying bandpass
task to select a sensible intent if the dataset lacks BANDPASS data.
qa_spw The SpW(s) to use for the qa calculation, in the order that they
should be tried. Input as a comma-separated list. The default is blank, in
which case the task will try SpWs in order of decreasing median sky
opacity.
accept_threshold The phase-rms improvement ratio
(rms without wvr / rms with wvr) above which the wrvg file will be
accepted into the context for subsequent application.
pipelinemode
dryrun
acceptresults
--------- examples -----------------------------------------------------------
Example
1. Compute the WVR calibration for all the MeasurementSets:
hifa_wvrgcal(hm_tie='automatic')
"""
_info_group_ = """pipeline"""
_info_desc_ = """
Generate a gain table based on Water Vapor Radiometer data, and calculate
a QA score based on its effect on the interferometric data.
"""
def __call__( self, vis=[ ], caltable=[ ], offsetstable=[ ], hm_toffset='automatic', toffset=float(0), segsource=True, sourceflag=[ ], hm_tie='automatic', tie=[ ], nsol=int(1), disperse=False, wvrflag=[ ], hm_smooth='automatic', smooth='', scale=float(1.), maxdistm=float(-1), minnumants=int(2), mingoodfrac=float(0.8), refant='', qa_intent='', qa_bandpass_intent='', qa_spw='', accept_threshold=float(1.0), pipelinemode='automatic', dryrun=False, acceptresults=True ):
schema = {'vis': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'caltable': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'offsetstable': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'hm_toffset': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'manual', 'automatic' ]}, 'toffset': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'segsource': {'type': 'cBool'}, 'sourceflag': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'hm_tie': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'manual', 'automatic' ]}, 'tie': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'nsol': {'type': 'cInt'}, 'disperse': {'type': 'cBool'}, 'wvrflag': {'type': 'cStrVec', 'coerce': [_coerce.to_list,_coerce.to_strvec]}, 'hm_smooth': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'manual', 'automatic' ]}, 'smooth': {'type': 'cStr', 'coerce': _coerce.to_str}, 'scale': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'maxdistm': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'minnumants': {'type': 'cInt', 'allowed': [ 1, 2, 3 ]}, 'mingoodfrac': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'refant': {'type': 'cStr', 'coerce': _coerce.to_str}, 'qa_intent': {'type': 'cStr', 'coerce': _coerce.to_str}, 'qa_bandpass_intent': {'type': 'cStr', 'coerce': _coerce.to_str}, 'qa_spw': {'type': 'cStr', 'coerce': _coerce.to_str}, 'accept_threshold': {'type': 'cFloat', 'coerce': _coerce.to_float}, 'pipelinemode': {'type': 'cStr', 'coerce': _coerce.to_str, 'allowed': [ 'automatic', 'interactive', 'getinputs' ]}, 'dryrun': {'type': 'cBool'}, 'acceptresults': {'type': 'cBool'}}
doc = {'vis': vis, 'caltable': caltable, 'offsetstable': offsetstable, 'hm_toffset': hm_toffset, 'toffset': toffset, 'segsource': segsource, 'sourceflag': sourceflag, 'hm_tie': hm_tie, 'tie': tie, 'nsol': nsol, 'disperse': disperse, 'wvrflag': wvrflag, 'hm_smooth': hm_smooth, 'smooth': smooth, 'scale': scale, 'maxdistm': maxdistm, 'minnumants': minnumants, 'mingoodfrac': mingoodfrac, 'refant': refant, 'qa_intent': qa_intent, 'qa_bandpass_intent': qa_bandpass_intent, 'qa_spw': qa_spw, 'accept_threshold': accept_threshold, 'pipelinemode': pipelinemode, 'dryrun': dryrun, 'acceptresults': acceptresults}
assert _pc.validate(doc,schema), str(_pc.errors)
_logging_state_ = _start_log( 'hifa_wvrgcal', [ 'vis=' + repr(_pc.document['vis']), 'caltable=' + repr(_pc.document['caltable']), 'offsetstable=' + repr(_pc.document['offsetstable']), 'hm_toffset=' + repr(_pc.document['hm_toffset']), 'toffset=' + repr(_pc.document['toffset']), 'segsource=' + repr(_pc.document['segsource']), 'sourceflag=' + repr(_pc.document['sourceflag']), 'hm_tie=' + repr(_pc.document['hm_tie']), 'tie=' + repr(_pc.document['tie']), 'nsol=' + repr(_pc.document['nsol']), 'disperse=' + repr(_pc.document['disperse']), 'wvrflag=' + repr(_pc.document['wvrflag']), 'hm_smooth=' + repr(_pc.document['hm_smooth']), 'smooth=' + repr(_pc.document['smooth']), 'scale=' + repr(_pc.document['scale']), 'maxdistm=' + repr(_pc.document['maxdistm']), 'minnumants=' + repr(_pc.document['minnumants']), 'mingoodfrac=' + repr(_pc.document['mingoodfrac']), 'refant=' + repr(_pc.document['refant']), 'qa_intent=' + repr(_pc.document['qa_intent']), 'qa_bandpass_intent=' + repr(_pc.document['qa_bandpass_intent']), 'qa_spw=' + repr(_pc.document['qa_spw']), 'accept_threshold=' + repr(_pc.document['accept_threshold']), 'pipelinemode=' + repr(_pc.document['pipelinemode']), 'dryrun=' + repr(_pc.document['dryrun']), 'acceptresults=' + repr(_pc.document['acceptresults']) ] )
return _end_log( _logging_state_, 'hifa_wvrgcal', _hifa_wvrgcal_t( _pc.document['vis'], _pc.document['caltable'], _pc.document['offsetstable'], _pc.document['hm_toffset'], _pc.document['toffset'], _pc.document['segsource'], _pc.document['sourceflag'], _pc.document['hm_tie'], _pc.document['tie'], _pc.document['nsol'], _pc.document['disperse'], _pc.document['wvrflag'], _pc.document['hm_smooth'], _pc.document['smooth'], _pc.document['scale'], _pc.document['maxdistm'], _pc.document['minnumants'], _pc.document['mingoodfrac'], _pc.document['refant'], _pc.document['qa_intent'], _pc.document['qa_bandpass_intent'], _pc.document['qa_spw'], _pc.document['accept_threshold'], _pc.document['pipelinemode'], _pc.document['dryrun'], _pc.document['acceptresults'] ) )
hifa_wvrgcal = _hifa_wvrgcal( )