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Non-recycled

Recycled:
  Binaries
  Isolated
  Double-NSs

Only 2-3% of known 
pulsars are 
“interesting” for 
basic/astro physics 
individually

In Galaxy, we know:
   ~160 binary MSPs
   ~40 isolated MSPs

   ~40 binary part-recyc
   ~20 isolated part-recyc

Definitions:
   Part-recycled:
      P > 20 ms,  B < 3x1010 G
   MSP:
      P < 20 ms, B < 109 G

Millisecond Pulsars
 (MSPs)

Normal
Pulsars

Pulsar Population of the Galaxy
~2300 pulsars known, but the Galaxy has ~30000 (and ~10000 MSPs)

“Recycling”
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Pulsar Timing:
Unambiguously account for every 

rotation of a pulsar over years

Observation 1
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Model
(prediction)Measurement

(TOAs: Times of Arrival)

Pulse Phase Tracking
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Obs 2

Pulsar Timing:
Unambiguously account for every 

rotation of a pulsar over years

Observation 1

Pulses

Obs 3

Model
(prediction)Measurement

(TOAs: Times of Arrival)

Measurement - Model = Timing Residuals

200ns RMS
over 2 yrs

Pulse Phase Tracking



Besides the normal 5 “Keplerian” parameters (Porb, e, asin(i)/c, T0, ω), 
General Relativity gives:

where: T⊙ ≡ GM⊙/c3 = 4.925490947 μs,    M = m1 + m2,   and   s ≡ sin(i)

Post-Keplerian Orbital Parameters

(Orbital Precession)

(Grav redshift + time dilation)

(Shapiro delay: “range” and “shape”)

These are only functions of:
- the (precisely!) known Keplerian orbital parameters P

b
, e, asin(i)

- the mass of the pulsar m
1
 and the mass of the companion m

2
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Need eccentric orbit and
time for precession

Need compact orbit and a lot of patience

Need high precision,
Inclination, and m

2



The Binary Pulsar:  B1913+16
 First binary pulsar discovered at Arecibo Observatory by 

Hulse and Taylor in 1974

NS-NS Binary
Ppsr = 59.03 ms

Porb = 7.752 hrs

a sin(i)/c = 2.342 lt-s

e = 0.6171

ω = 4.2 deg/yr

Mc = 1.3874(7) M⊙

Mp = 1.4411(7) M⊙



The Binary Pulsar:  B1913+16
Three Relativistic Observables: ω, γ, Porb

From Weisberg &
Taylor, 2003

Indirect detection of Gravitational Radiation



Gravitational Wave Detection with a Pulsar
Timing Array

● Need good MSPs
● Significance scales 

directly with the 
number of MSPs being 
timed.  Lack of good 
MSPs is currently the 
biggest limitation

● Must time the pulsars for 
5-10 years at a precision 
of ~100 nano-seconds!

N. America Australia Europe



GBT 350MHz Drift Scan Survey in 2007
Lorimer, McLaughlin, Ransom, Boyles, Lynch, Hessels, Kondratiev, Stairs, 

van Leeuwen, Archibald, Kaspi, Roberts, Stovall, Karaku-Argaman, + 
several undergraduate students...

~1350 hrs of obs @25 MB/s ~ 135 TB   (~25% of the full sky!)

So far 2 fantastic pulsar  – white dwarf systems....

Boyles et al. 2013, ApJ
Lynch et al. 2013, ApJ

J0337+1715

J0348+0432



PSR J1738+0333
• 5.85 ms pulsar from 2001

• 8.5 hr, highly circular, orbit with WD

• Excellent long-term timing: Pb-dot, π

• Optical obs: mass ratio (8.1±0.2) and 
WD model gives Mwd = 0.181(7) M⊙

This is an excellent test of
 scalar-tensor gravity!

 Antoniadis et al. 2012
Freire et al. 2012



NS-WD radiative test of GR
In mono-scalar-tensor theories, there can be 
dipolar gravitational radiation:

Wex 2014
 arXiv: 1402.5594 

α
p
 and α

c
 are the effective scalar coupling of PSR & companion

To first order:  

Where  ~ GM/Rc2 is the gravitational binding energy:

 ~0.1 for NSs      ~10-6 for WDs      ~10-10 for planets

NS-NS systems have:  (
p
 – 

c
)2 ~ 10-5 to 10-4

J1738+0333 (i.e. NS-WD) has:  (
p
 – 

c
)2 ~ 0.012

PSR-WD orbital decays can be dominated by dipolar 
radiation, despite “good” NS-NS quadrupolar tests



 Wex 2014, arXiv: 1402.5594 

Constraints on scalar-tensor theories

• T1(0,0) theories

• GR has 0=0=0 

• Jordan – Fierz – 
Brans – Dicke 
theory has 0=0

• This is a form of 
Strong 
Equivalence 
Principle violation 
test 



PSR J0348+0432
• 39.1 ms GBT Driftscan pulsar

• 2.4hr relativistic orbit with WD

• He WD is ~10,120K, log(g) ~6.0

• Mass ratio of 11.70 +/- 0.13!

• Orbital period decay coming...

NS mass ~ 2.01(4) Msun!
(interesting tests of GR)

 Antoniadis et al Science, 
2013, 340, 448



Gravitational Binding Energy

 N. Wex 

J1614-2230J1614-2230

Relativistic &
massive

Massive NS gives qualitatively different tests than previously
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Updated timing 
courtesy P. Freire



An example of a 
scalar-tensor 

theory T1(10-4, -4.5) 
which passes 

J1738+0333 tests, 
but which fails for 

J0348+0432

J0348 rules out new parameter space

 Wex 2014, arXiv: 1402.5594 





Relatively bright 2.7ms pulsar!  366 Hz!
Arecibo can see it!
    ~0.8μs arrival times in 10 seconds (~13,000 of them)! 

L-band
Linear poln
Circular poln



UV/Optical/IR Counterpart

Inner White
Dwarf
~18-19 mag
GALEX (UV)
SDSS (Opt)
WIYN (IR)
Spitzer (IR)



UV/Optical/IR Counterpart

Inner White
Dwarf
~18-19 mag
GALEX (UV)
SDSS (Opt)
WIYN (IR)
Spitzer (IR)

Outer star is
therefore a 
cooler WD!

Main seq star
doesn't fit IR data

WD does

Inner WD



Optical spectroscopy on inner WD...

Teff = 15,800K  log(g) = 5.82
Therefore He WD of 0.15-0.2 Msun
RVs give mass ratio of 7.32+/-0.08
W/ timing masses, gives ~6% radius:
• D = 1,300+/-80 pc

Kaplan, van Kerkwijk et al 2014, ApJ



Geometric Light-travel Delays



~1.34 us weighted RMS for 26,260 TOAs!

Full 3-body Newtonian + Relativistic Doppler Shift

Modified Two-Keplerian Ellipse Model

Arecibo    GBT    Westerbork



~1.34 us weighted RMS for 26,260 TOAs!

Full 3-body Newtonian + Relativistic Doppler Shift

Modified Two-Keplerian Ellipse Model

Arecibo    GBT    Westerbork

This is pure Newtonian gravity 
with a touch of Einstein's 

Special Relativity!

F = GMm/r2

But it gives incredibly 
complicated behavior!



PSR J0337+1715:  fully solved!
• High precision masses:  Mpsr = 1.4378(13) Msun

Mwdi = 0.19751(15) Msun        Mwdo = 0.4101(3) Msun
• Orbits are co-planar to < 0.02 deg!  (i = 39.24 deg)
• Apsides aligned (despite ei ~ 7x10-4 and eo ~ 0.035!)

InnerOuter

WD

WD

PSR
Inner



Strong Equivalence Principle
• Gravitational and inertial 

masses are equal
• Composition, shape, mass, 

location etc doesn't matter
• This applies to objects with 

strong self-gravity as well:
• Gravitational binding 
energy gravitates!
• Only GR embodies this

• Tested via the Nordtvedt 
parameter, η:

by Alan Bean
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Lunar Laser Ranging (LLR) has 
constrained: |ηϵ| < 2x10-13, 

corresponding to |η| < 4x10-4, 
given weak gravity of Solar 

System bodies

Müller, Hofmann, Biskupek, 
2012, CQGrav



Example of initial testing...

 Plot by Anne Archibald 

Gives several microsecond residuals...



 N. Wex, private communication 

J0337+1715 scalar-tensor constraints
• “G” effectively different 

for NS and WD.  They 
fall in relatively “strong” 
grav field of outer WD.

• Prediction is ~1-2 orders 
of mag better than other 
current or future tests 
(including Lunar Laser 
Ranging!), and soon!  
(Archibald et al in prep).

• T
1
(

0
,

0
) theories

• GR has 
0
=

0
=0 

• Jordan–Fierz–Brans– 
Dicke theory has 

0
=0



Summary:  PSR-WD tests of GR
• All-sky pulsar surveys provide amazing (and 

surprising) systems to test GR in interesting ways
• The survey yield will increase in the next decade
• There are 104 - 105 pulsars to find in the Galaxy, 

and a few percent of them will be interesting
• High-precision timing makes many PSR systems 

interesting now that were uninteresting yesterday
• New tests of the Strong Equivalence Principle will 

be out very soon (especially J0337+1715)



Orbital Animation





PSR J0337+1715
Bright:  ~2 mJy at 1.4 GHz
Fairly Fast:  2.73 ms / 366 Hz
DM of 21.3 pc/cm3

(distance of ~750 pc)



System Evolution?
• Questions:

• Why so co-planar?
• Why so circular?
• Multiple mass Xfers?

• Possible Answers:
• Common envelope(s?)
• Mass Xfer-ed 3 times!
• Multiple LMXB phases

Tauris and van den Heuvel, 
2014, ApJ



VLBA Distance Soon
 Already have 3 epochs of approved VLBA campaign.. 

1-2% distance on the way (Adam Deller and co)

– - Will be a perfect “calibration” source for 
low-mass He WD models

– - Astrometric reflex motion from outer orbit is 
~237/Dkpc μas, easily measurable with VLBA

– - Since size of orbit is known from timing, will 
also give independent geometric distance
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