Our 6-hr observation of Terzan 5 in July 2004 taken with the GBT, the S-band receiver and the Pulsar Spigot [6] (giving us 600 MHz of
usable bandwidth) was 5-10 times more sensitive to MSPs than the Parkes searches, and resulted in 14 new MSPs, while follow-up
observations provided 7 others. Terzan 5 now has more known pulsars (24) than any other globular cluster in the Galaxy, confirming

Hittin' the Millisecond Pulsar Jackpot In
Glooular Cluster Terzan 5

Scott Ransom (NRAO/McGill), Jason Hessels (McGill), Ingrid Stairs (UBC), Paulo Freire
(NAIC), Victoria Kaspi (McGill), Fernando Camilo (Columbia), and David Kaplan (MIT)

Summary

We report the discovery of 21 millisecond pulsars (MSPs) in the rich globular cluster Terzan 5 using the Green Bank Telescope at 2 GHz.
This cluster, located near the galactic center, has long been suspected of harboring many MSPs due both to its large predicted stellar
Interaction rate [1] and the steep-spectrum radio emission observed in its core [2]. However, earlier but extensive pulsar searches using
the Parkes radio-telescope had only uncovered 3 pulsars [3,4,5], due partly to the deleterious effects of the ISM towards the cluster.

that it is (or was) one of the largest producers of MSPs [7,8].

At least 13 of the new pulsars are members of binary systems. There are two or more eclipsing systems (one of which, Ter5P, likely has
a peculiar evolved companion), the 3rd and 4th fastest known rotators (at Ppsr = 1.67 and 1.73 ms they are the fastest MSPs known in
globular clusters), a rare long orbital period (P,rp~60 days) cluster binary, and two highly eccentric binaries. The relativistic periastron
advance for the two eccentric systems indicates that they both likely have massive pulsars. More quantitatively, at least one of these
pulsars has a mass >1.68 M at 95% confidence. Such large neutron star masses constrain the equation of state of matter at or beyond

the nuclear equilibrium density [9].

Observations of the cluster over the next year or two will provide a precise mass for one of the seemingly massive MSPs, will probe the
mass-to-light ratio of the cluster core (and provide evidence for or against a black hole residing there), and the mass distribution of the
cluster as projected on the sky, will establish precise positions (<1") of the pulsars for future IR and X-ray observations, and will

undoubtedly uncover additional MSPs.
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Table 1: Known pulsars in Terzan 5. Pulsars listed without orbital parameters are likely isolated
systems while those marked with an © are eclipsing systems. The errors on the dispersion
measures (DMs) range from 0.01—0.1 pccm™" and the errors on the measured flux densities
are ~30%. The flux densities for the eclipsing pulsars include only the times when the pulsar is
not eclipsed. The light travel time across the projected pulsar semi-major axis is defined as z =
ay sin(z) /c. Eccentricities listed as “0” are too small to measure at present and have been set to
zero for orbital parameter fitting. The minimum companion mass 12 was calculated assuming
a pulsar mass m; of 1.4 M, and :—90° except for Ter 5 I and J. All measured parameters were
determined using the TEMPO software package.
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Massive Neutron Stars in Terzan 5

Two of the pulsars, Ter5l and J, are in compact orbits around what are almost certainly
white dwarfs (WDs). Unlike most MSP-WD binaries which have circular orbits from the
"recycling" process, these systems have highly eccentric orbits and were therefore
formed in a different manner. A likely formation mechanism involves the direct collision
between an isolated neutron star (NS) and a red giant [14]. After a short period of
possibly hypercritical accretion and the ejection of most of the envelope, the resulting
system would include a mildly recycled pulsar, a 0.2-0.4 M "WD" companion, and an
eccentric orbit - exactly what we observe in these two systems.

We have measured highly significant periastron advance from both systems which is
likely due to general relativistic effects and not to tides or WD rotation [15,16]. If
correct, GR provides the total
system masses (left), which
combined with the mass
function and a random orbital
inclination (i) distribution allow
us to calculate marginal
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probability distributions for the
pulsar and companion masses.
For both systems, the median
pulsar mass is >1.7 M,
considerably more massive
than the NSs that have been
well measured to date.
Calculation of the joint
probability that at least one
pulsar has a mass >M s, leads
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Dispersion Measure (DM) Distribution
A histogram of the DMs for the 24 known pulsars in Terzan 5. The
letters indicate pulsars with "outlying" DMs, of which only Ter5A
currently has a precisely determined position (36" away from the
cluster center). The pulsars with "central® DMs are almost
certainly located very near the cluster core on the sky. The
total spread in DM is the largest known for any globular cluster.
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A histogram of the spin periods of the 24 pulsars known in Terzan 5

(solid grey) and the 22 pulsars known in 47 Tucanae (hashed). The 47 =|5

Tuc pulsars are a homogeneous population with periods 2.1-7.6 ms
[13], while those in Terzan 5 have a flatter distribution that includes six
pulsars slower than 7.6 ms and the four fastest pulsars known in GCs
(Ppsr = 1.67, 1.73, 2.05, and 2.07 ms). A Kolmogorov-Smirnov test
suggests that these samples are drawn from different parent
distributions at 85% confidence. These differences may be related to
the dynamical states of the cluster cores (i.e. just pre- or just post-core
collapse for Terzan 5 [11]), different epochs of MSP creation, or the
occurrence of unusual evolutionary mechanisms that only manifest
themselves at very high (i.e. >1 0° pc‘3) stellar densities.

! i " | Y

A i Y
References

[1]. Verbunt, F.,, 2002, ASP Conf. Ser. 265, 289.

[2]. Fruchter, A. & Goss, M. 2000, ApJ, 536, 865.

[3]. Lyne, A. et al., 1990, Nature 347, 650.

[4]. Lyne, A. et al., 2000, MNRAS, 316, 491.

[5]. Ransom, S., 2001, Ph.D. thesis, Harvard Univ.

[6]. Kaplan, D. et al., 2005, PASP, submitted.

[7]. Sigurdsson, S. & Phinney, E., 1995, ApJS, 99, 609.

[8]. Kulkarni, S. & Anderson, S., 1996, IAU Symp. 174, 181.

[9]. Lattimer, J. & Prakash, M., 2004, Science, 304, 536.

[10]. Harris, W., 1996, Al, 112, 1487.

[11]. Cohn, H. et al., 2002, ApJ, 571, 818.

[12]. Heinke, C. et al., 2003, ApJ, 590, 809.

[13]. http://www.naic.edu/~pfreire/GCpsr.html

[14]. Rasio, F. & Shapiro, S., 1991, ApJ, 377, 559.

[15]. Wex, N., 1998, MNRAS, 298, 997.

[16]. Splaver, E. et al., 2002, ApJ, 581, 509.

[17]. Nice, D., Splaver, E., & Stairs, I., 2005, ASP Conf. Ser. 328, 371.

i

¥
fm

The National Radio Astronomy Observatory is a facility of the National Science
Foundation operated under cooperative agreement by Associated Universities, Inc.

an NSERC Discovery grant. FC thanks support from the NSF. VMK holds a Canada
Research Chair and is supported by an NSERC Discovery Grant and Steacie
Fellowship Supplement, by the FORNT and CIAR, and by a New Opportunities Grant
from the Canada Foundation for Innovation. DLK is a Pappalardo Fellow.

ol i Teantle

a





