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Dr. Giovanni G. Fazio Scott Mitchell Ransom

Abstract

We have developed two new methods for finding binary pulsars that search
complementary portions of parameter space. Both techniques examine small regions
of the Fourier transform of a time series and identify the distinctive but very
low signal-to-noise patterns produced by binary pulsars. The first technique is a
Fourier-domain version of traditional “acceleration” searches which can coherently
detect a binary pulsar if the orbital period is much longer than the observation time
(Pyry 2 10T,5). Based on Fourier-domain matched filtering, it provides sensitivities
similar to time-domain versions, but with great computational advantages (i.e.
greatly decreased memory usage, increased speed, and an inherently parallel
nature) when the time series is very long (> 10® points). The second technique is a
computationally “cheap” but incoherent search for binary pulsars where P,.;, < %Tobs.
This search detects periodic sidebands created by orbital phase modulation of a
binary pulsar’s signal using a two-stage Fourier analysis. Sideband searches have
the potential to detect very interesting exotic pulsar systems in ultra-compact
binaries that would be impossible to detect using traditional techniques. We have
implemented both searches along with many other advanced Fourier “tricks” into a
suite of pulsar search software called PRESTO. Using this software we have discovered
a very interesting 3 ms binary pulsar with a 102 m orbital period and a ~ 10 Mjypiter
companion in the globular cluster NGC 6544, a most-likely isolated 4.71 ms pulsar
in the globular cluster Terzan 5, and have confirmed the new 65.6 ms X-ray pulsar

discovered in the supernova remnant 3C 58.
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Those afraid of the universe as it really is, those who pretend to nonexistent
knowledge and envision a Cosmos centered on human beings will prefer the fleeting
comforts of superstition. They avoid rather than confront the world. But those with
the courage to explore the weave and structure of the Cosmos, even where it differs

profoundly from their wishes and prejudices, will penetrate its deepest mysteries.

— CARL SAGAN, Cosmos

For Ian and Ellie.
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Chapter 1

Introduction

1.1 Overview

Discovering new pulsars today is hard. Almost all of the bright pulsars have already
been discovered, leaving only the non-luminous, distant, or exotic left to find. This
thesis is about finding those pulsars. In particular, this thesis is primarily about
finding pulsars that are non-luminous, distant, and exotic — the binary millisecond
pulsars (MSPs) in globular clusters.

Radio pulsars would be difficult to detect if the only problem was their
intrinsically low radio flux densities. Unfortunately, other problems plague pulsar
searchers as well. The frequency dependent dispersive effects of the interstellar
medium (ISM) require searches over not just pulsar period and location on the
celestial sphere, but also over a range of Dispersion Measures (DMs) that are
proportional to the integrated electron density along the line of sight to the pulsar.
The orbital motion of binary pulsars causes the virtually constant spin period of
a pulsar to be observed as changing, possibly drastically, over short intervals of
time. And terrestrial radio interference, now so common in our modern world, often
overwhelms feeble pulsar signals or perhaps more nefariously, masquerades as them.

Yet in spite of these difficulties pulsars are being found at a breathtaking rate.
In the last few years, the Parkes Multibeam Pulsar Survey (Lyne et al. 2000a;
Manchester et al. 2001) has nearly doubled the number of known pulsars (to ~ 1300)
by observing the Galactic plane for relatively long integrations (~ 35m) at 20 cm
(1.4GHz). Observations taken at 1.4 GHz, as opposed to the more traditional
frequency of 400 MHz, greatly reduce the pulse smearing caused by uncorrected
DM (ox v~3) and the pulse broadening effects of interstellar scattering (o< v~ %)

'For a thorough discussion of interstellar propagation and instrumental effects on pulsar obser-
vations see Cordes (2001).
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High-bandwidth and very-low-noise receivers help to compensate for the lower pulsar
flux densities observed at these wavelengths?.

Searches for pulsars in globular clusters tend to be even more difficult for two
basic reasons. They are relatively distant and their pulsar populations are dominated
by MSPs — many of which are in close binary systems (see e.g. Kulkarni & Anderson
1996; Fruchter & Goss 2000; Camilo et al. 2000).

The large distances of globular clusters imply the need for long observation times
in order to detect the intrinsically low luminosity MSPs?. Such distances also mean
that high frequency resolution search hardware (i.e. large numbers of filterbank
channels or correlator lags) is required to contend with the higher expected DMs.

Searching for MSPs is difficult in general since their fast spin periods require
high time resolution data (especially to see pulse structure from higher harmonics)
and pulse smearing due to dispersion or scattering has progressively greater effects
as spin periods decrease. The binary nature of most cluster pulsar MSPs makes
matters even worse. The orbital motions of these systems ”smear” the signal power
over many bins of the Fourier power spectrum, greatly decreasing search sensitivities
(see e.g. Johnston & Kulkarni 1991).

Traditional “acceleration” searches (e.g. Middleditch & Kristian 1984; Anderson
et al. 1990; Wood et al. 1991) attempt to correct for these orbital motions by
approximating the frequency evolution as linear in time and searching over this
additional parameter. Such techniques have successfully uncovered such remarkable
systems as the relativistic double neutron star (NS) system in M15 (Anderson 1992)
and the extremely low mass systems with orbital periods shorter than 2 hours in
47 Tucanae and NGC 6544 (Camilo et al. 2000; Ransom et al. 2001b; D’Amico
et al. 2001). Unfortunately, this technique only works when the time series length
is much shorter than the orbital period. For short orbital period systems, this
drastically limits the duration of data that can be analyzed coherently and therefore
the resulting sensitivity.

The complex nature of globular cluster pulsar searches has made high-performance
computing a requirement from the beginning. When Lyne et al. (1987) discovered
the first globular cluster pulsar (a 3ms pulsar in M28) the analysis took 5h on a

2Radio pulsar flux densities go as S, oc ¥® where —1 < a < —4 (Lyne & Graham-Smith 1998).

3 Another method of detecting weak MSPs is appropriate for certain globular clusters that display
significant scintillation. Since diffractive interstellar scintillation modulates a pulsar’s intensity with
an exponential probability distribution, repeated observations of a cluster can occasionally catch a
very weak pulsar when it is scintillated to a significantly higher-than-average flux density. Such an
observation strategy has been used with great success in 47 Tuc (Camilo et al. 2000) and NGC 6752
(Possenti et al. 2001).
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TABLE 1.1
Globular Cluster Search Raw Data

BW  Sample T,,, Rate 8h Obs
Telescope  Instrument Ngo, (MHz)  Bits (us) (MB/s) (GB)

GBT BCPM 96 170 4 a0 0.92 25.7
Parkes Multibeam 512 256 1 80 0.76 21.5
Arecibo WAPP 256 100 16 64 7.63 214.6
GBT Spigot Card 2048 800 8 82 23.8 670.6

Cray XMP supercomputer. As computer speeds and memory sizes increased, so
did the complexity of the search algorithms and the size of the data sets, such that
even today, searches of globular clusters with known DMs can take many times
the duration of the observation to conduct — even using state-of-the-art computer
hardware. For clusters where searches over DM and acceleration are performed
many thousands of CPU hours can be spent searching an observation.

To give an idea of the computational requirements for typical cluster searches
it is useful to simply look at the sizes of the raw data sets that are generated
during an observation. Table 1.1 shows some of the basic properties of “typical”
search data using current (or soon-to-be-available) instruments. For 8 h globular
cluster observations, which we argue are useful for detecting isolated pulsars and for
“sideband” searches (see Chapter 4), raw data sets can run to over a half terabyte
in size! For those of us attempting full-scale period, DM, and acceleration searches
on such observations, we need all the CPU cycles (and disk space) we can handle.

1.2 Why Globular Clusters?

Searching globular clusters for pulsars obviously takes a lot of effort as well as
prodigious quantities of telescope and computer time. This begs the question: “Why
globular clusters?”

Globular clusters are known to be rich sources of radio pulsars — approximately
55 at the time of this writing. Mechanisms which are not yet fully understood caused
clusters to manufacture large numbers of low-mass X-ray binaries (LMXBs; thought
to be precursors of MSPs), well in excess of what one might initially expect based
on simple mass and/or number arguments compared with the Galaxy. The high
cross-sections fordynamical interactions between primordial binaries and other stars
in the dense cluster environment undoubtedly has much to do with this fact (Davies
& Hansen 1998; Rasio et al. 2000). Various arguments suggest that anywhere from a
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few hundred to a few thousand active pulsars await discovery in the globular cluster
system (Fruchter & Goss 1990; Anderson 1992; Fruchter & Goss 2000; Camilo et al.
2000).

As for the science produced by cluster pulsars, just as for Galactic systems, most
of it comes from long-term high-precision pulse timing measurements. Timing of
the 8 known pulsars in M15 allowed measurements of the radial and luminosity
distributions of the pulsars, estimates of the central and average surface density of
the cluster, and the possible identification of a gradient in the Galactic free-electron
distribution (Anderson 1992). Timing observations of some of the more than 20
MSPs in 47 Tuc (Freire et al. 2001a) have allowed similar measurements, as well as
the identification of X-ray and (in one case) optical counterparts (Grindlay et al.
2001; Edmonds et al. 2001), the possible detection of a triple system with two
pulsars, the measurement of the cluster proper motion, and the detection of ionized
intracluster gas (Freire et al. 2001b). These and other groups have also made many
interesting measurements of cluster binary pulsar systems which have provided tests
of accretion and ablation models, masses of neutron stars and white dwarfs, and
insights into the evolutionary history of X-ray binaries (see Kulkarni & Anderson
1996). Future discoveries have the potential to offer tests of General Relativity of
the kind made famous by the Hulse-Taylor binary pulsar.

We have been spurred to action in this field by four basic facts.

1. Radio telescopes and pulsar back-ends have undergone revolutionary
improvements in sensitivity in the past few years are just now beginning to
come on-line and produce results. Examples include the Arecibo upgrade,
the new Green Bank Telescope (GBT), and the Multibeam receiver system
at Parkes. Each of these systems will undoubtedly discover many hundreds
of pulsars in the coming years (the unfinished Parkes Multibeam survey has
already discovered more than 600 new pulsars as mentioned in §1.1).

2. The costs of the large numbers of CPU cycles required to analyze globular
cluster data has dropped drastically in recent years. It is now possible to
buy “Beowulf” style? machines with fraction-of-a-teraflop capabilities for
only ~ $100K. These machines make large-scale searches of globular clusters
possible for only a fraction of the cost required just a few years ago.

3. Search algorithm improvements, on-the-other-hand, have not kept pace with
the advances in computers and pulsar search hardware. In fact, we would
argue that search algorithm development has remained virtually stagnant for

4A collection of usually identically configured PC-style computers connected together on a fast
local network.
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the past 20 years. New search algorithms optimized for the “Beowulf” style
machines mentioned above would be especially useful, and in fact are some of
the main topics of this thesis.

4. Very Large Array (VLA) images of globular clusters taken over the years have
identified a number of radio sources with characteristics indicative of radio
pulsars, but where no pulsations have been detected (Hamilton et al. 1985;
Fruchter & Goss 1990; Kulkarni et al. 1990; Johnston et al. 1991; Fruchter &
Goss 2000). One possible reason why no pulsations have been detected is that
these sources are located in high-DM clusters and contain MSPs in potentially
very compact binaries. The selection effects described above have made them
virtually smpossible to detect using conventional search techniques.

This thesis addresses each of these items. In particular, a large fraction of this work
is dedicated to the discussion of new algorithms and Fourier techniques that allow
large scale searches for binary pulsars to be carried out on individual workstations.

1.3 Chapter Summaries

The thesis is divided into three central chapters that have been — or soon will be —
published as separate papers, followed by a chapter of additional results and future
prospects, and then various appendices.

e Chapter 2 discusses a variety of useful Fourier analysis techniques that can
be used to greatly increase the amount of information gleaned from a Fourier
transform of a long astrophysical time series. Many of these techniques have
been known and used by some of the wizards of Fourier analysis for some time
(e.g. Middleditch 1976), but remain unknown and unused by most researchers.
This chapter provides derivations of the techniques and discusses their use
in the context of pulsar data analysis. One of the most useful techniques
presented is a Fourier-domain matched filtering search optimized for use on
workstation-class machines.

e Chapter 3 presents the new 3 ms binary pulsar PSR J1807—2459 discovered
in the globular cluster NGC 6544 using a Fourier-domain “acceleration” search
discussed in Chapter 2. This fascinating system has a minimum companion
mass of only ~ 10 Myypiter and an orbital period less than 2 hours.

e Chapter 4 introduces the phase modulation “sideband search”. We calculate
the general Fourier response of a binary pulsar in a circular orbit and show how
the new search can identify this response in an efficient manner. We compare
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the sideband search with traditional “acceleration” searches and provide a
detailed discussion of how real searches would be conducted.

e Chapter 5 presents results from some of the searches we have conducted
using the algorithms developed for this thesis. The newly discovered pulsar
Terzan 5 D is presented as well as the new Crab-like X-ray pulsar in supernova
remnant 3C 58. Future searches and prospects are mentioned.



Chapter 2

Fourier Techniques for Very Long
Astrophysical Time Series Analysis

Scott M. Ransom, Stephen S. Eikenberry, & John Middleditch 2001, to be submitted
to The Astronomical Journal

Abstract

In this paper, we present an assortment of both standard and advanced Fourier
techniques that are useful in the analysis of astrophysical time series of very long
duration — where the observation time is much greater than the time resolution of
the individual data points. We begin by reviewing the operational characteristics
of Fourier transforms (FTs) of time series data, including power spectral statistics,
discussing some of the differences between analyses of binned data, sampled data,
and event data, and briefly discuss algorithms for calculating discrete Fourier
transforms (DFTs) of very long time series. We then discuss the response of DFTs
to periodic signals, and present techniques to recover Fourier amplitude “lost”
during simple traditional analyses if the periodicities change frequency during the
observation. These techniques include Fourier interpolation which allows us to
correct the response for signals that occur between Fourier frequency bins. We then
present techniques for estimating additional signal properties such as the signal’s
centroid and duration in time, the first and second derivatives of the frequency, the
pulsed fraction, and an overall estimate of the significance of a detection. Finally,
we present a recipe for a basic but thorough Fourier analysis of a time series for
well-behaved pulsations.
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2.1 Introduction

The analysis of time series data is an important tool in many areas of astrophysics,
including research involving white dwarfs, black holes, and neutron stars. In the
study of neutron stars, time series analysis has had particular importance for pulsar
research due to the high coherence of pulsar periodicities. While many techniques
can be used to investigate the properties of these periodic signals, the computational
efficiency of the Fast Fourier Transform (FFT) makes Fourier analysis the preferred
approach for many applications (see e.g. Burns & Clark 1969). The literature
contains literally hundreds of descriptions of various aspects of Fourier analysis,
most of which deal with signal detection using the power spectrum.

Because of this concentration on power spectra, many researchers discard a
wealth of information provided by the Fourier phases. Techniques which use this
phase information exist that can provide insight into many useful signal properties.
While many of these techniques have been known for some time (see e.g. Middleditch
1976), few have appeared in textbooks or refereed journals, and fewer still have
been presented with any sort of derivation or insight into their assumptions and/or
limitations.

A second, more practical problem with most astronomical Fourier analysis is
its concentration on short time series. We define “short” to mean either that
the full time series of binned or sampled data can fit into the core memory of
your computer (N < 107 points), or for data consisting of events (such as photon
arrival times in X-ray astronomy), that the time resolution (dt) of each event
makes up a non-negligible fraction of the total time duration (7') of the data
(T/dt < 107). Billion point FFTs have been used successfully in the past (e.g.
Anderson 1992; Mattox et al. 1996; Middleditch et al. 2000), but each required the
use of state-of-the-art supercomputing facilities. Today, such analyses are possible
using clusters of workstations or even individual desktop machines. Many projects,
such as pulsar searches of globular clusters, astero- or helioseismological observations,
and gravitational wave experiments, require extremely large Fourier transforms in
order to make the highest sensitivity (i.e. coherent) searches for pulsations, and to
extract the maximum amount of information from signals found in these searches.

It is our goal in this paper to present some useful Fourier analysis techniques,
that for various reasons are used only rarely when working with long time series.
Most of our examples pertain to pulsar searches of very long time series, but the
methods can be used in the Fourier analysis of virtually any coherent periodicity.
This paper will briefly discuss the properties of the DFT, its response to periodic
signals and noise, and methods for its computation. We will discuss methods for
interpolating Fourier amplitudes, estimating a signal’s duration and centroid in
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time, accurately determining its frequency and frequency derivative, correcting for
changing pulsation frequency during an observation, and estimating the phase- or
amplitude modulation of a signal. Such techniques allow the detection of signals

whose frequencies or amplitudes change significantly during an observation — for
instance, due to orbital motion or pulsar spin-down.

2.2 Discrete Fourier Transform

In order to present more advanced Fourier techniques later, we first review some
fundamentals of the DFT and its most common implementation, the FFT. Since
thorough discussions of the Fourier transform in both its continuous and discrete
variants exist in the literature (e.g. Bracewell 1999), we will mention only a few topics
of particular relevance to astrophysical data analysis, closely following Middleditch
(1976).

2.2.1 Introduction to the DFT

The k' element of the Discrete Fourier Transform (DFT), of a uniformly-spaced
time series n; (j =0,1,..., N — 1) is defined as

N-1
Ak = Z n; e_QWijk/N, (21)

J=0

where i = v/—1 and k is the Fourier frequency or wavenumber (k =0,1,..., N —1).
For a time spacing dt between successive data elements, the frequency of the k™
element is f; = NLdt = %, where T is the total time duration of the sequence
being transformed. This frequency spacing of %, for evenly sampled, un-padded
and non-windowed data, is often called the Independent Fourier Spacing (IFS)! |
and defines the finest frequency resolution available while maintaining completely
independent Fourier amplitudes. Fourier frequency % is known as the Nyquist
frequency.

If we view the DFT summation in the complex plane, we see that it is a simple
vector addition with each element rotated by —% from the previous element. If the
n; have a constant value, the sum will form £ regular %—sided polygons with each

polygon returning near to the origin, and with the last one returning exactly to the

!The IFS is important when trying to determine the overall significance of a candidate from a
search. The number of TFSs searched corresponds to the number of independent trials searched and
should therefore be included in calculations that try to determine if a candidate was produced by
noise. See Vaughan et al. (1994).
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origin. Therefore, the DFT of a constant data string will be identically zero for all
k > 0, and equal to the sum of the data elements for £ = 0 (the “DC” frequency
element).

For most astrophysical observations, the data points are real-valued. This
property adds an important feature to Fourier transforms of these time series —
they are symmetric about the Nyquist frequency, such that Ay_, = A}, where A}
represents the complex conjugate of A. This symmetry allows us to calculate the
full DFT of a time series by computing amplitudes at only half of the normal Fourier
frequencies, thereby speeding up computation of the DFT by nearly a factor of two
(e.g., Press et al. 1992).

When deriving properties and techniques based on DFTs, it is often both
computationally and intuitively easier to work with a time-normalized data series,
where 1" = 1 and u represents the fraction of the observation complete at any given
instant (such that 0 < w < 1). In this case, instead of working with frequencies
f, or integral wavenumbers k, we define r, which represents any real wavenumber
(including non-integers). If the number of samples, N, from our data source, n(u),
is large, we can compute a continuous F'T

1
A = N/ n(u) e ™™ du, (2.2)
0

which is almost identical to our DFT when r = £, and produces very high accuracy
estimates of the Fourier amplitudes at any frequency such that 0 < r < % We will
use this approximation in many of our derivations.

2.2.2 Computation of Very Long FFTs

The Fast Fourier Transform is a family of well-known computer algorithms which
quickly calculate a DFT in only O(N log,(N)) operations as opposed to the O(NN?)
operations of a brute-force DF'T. FFTs, their computation, and their origins have
been described in numerous articles and books over the last few decades (see
Bracewell 1999, for an introduction). Therefore, we will describe only a few special
versions which have become generally known only recently and which are useful in
the analysis of extremely long time series.

High energy pulsar searches using photon counting systems (infrared, optical,
x-ray, and gamma-ray detectors) or pointed radio telescope searches (for example,
searching globular clusters) often utilize very high sampling rates (i.e. 10 — 50 kHz)
and very long integration times of hours, days, or even weeks. These observations
result in time series with hundreds of millions or even billions of data points. The
subsequent FFTs are impossible to perform using conventional FFT algorithms
unless the full time series fits into the core memory of the computer being used.
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Utilizing special “out-of-core” FFT methods, we can transform such huge arrays
using distributed memory parallel systems or with a single workstation and
manageable numbers of passes through the data stored on external media. Most
of these methods are based on the “four-step” FFT and/or special external media
array permutation methods (Fraser 1976; Bailey 1990).

The “Four-Step” FFT

Closely following the derivation described in Sweet & Wilson (1995), we can think of
our one-dimensional time series as a “C-like” or row-ordered, two-dimensional matrix
of size N = N, N,, where N, is the number of columns (i.e. the length of a row) and
N, the number of rows (i.e. the length of a column). Using this data decomposition,
the FFT is computed by 1. FFTing the columns of the matrix, 2. multiplying the
data by complex “twiddle factors”, &. FFTing the rows of the matrix, and 4. matrix
transposing the result. If we define indices x =0,1,...,N.—1, y=0,1,..., N, — 1,
l=0,1,...,N, — 1, and m =0,1,..., N. — 1, we can write our signal and its DFT
amplitudes as

n(z,y)=n;, j=N.y+z (2.3)

and
A(l,m) = Ag, k=N, m+1. (2.4)

Substituting into the definition of the DFT (eqn. 2.1) and simplifying we get

Ne—1 Ny—1
A(l, m) — Z e—27ria:l/N Z TL(JZ', y)e—Qwiyl/NT e_ZWizm/Nc. (25)
z=0 y=0

Notice that the bracketed terms are really N, DFTs of length N, — FFTs of the

matrix columns multiplied by the “twiddle factor” e 2™#!/N We denote these column
FFTs as
Ny—1
Az, 1) = g~ 2mial/N Z n(z,y) e 2miyl/Nr | (2.6)
y=0

We now see that the outer summation is N, DFTs of length N, — FFTs of the
matrix rows composed of the A.(z,[) terms. We denote the result of these transforms

as
N.—1

A (m, 1) =Y A, 1) emiom/Ne, (2.7)

z=0

To recover the full FFT in its normal order, we simply transpose A,(m, 1)

A(l,m) = AT (m, 1). (2.8)
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The “four-step” algorithm only needs small portions of the data in memory at any
one time. Unfortunately, the short FFTs are strided in memory? by instead of being
stored contiguously. This results in a significant inefficiency in today’s cache-based
processors and requires inter-node communications when distributing the short
FFTs over many processors on parallel computer systems. These shortcomings can
be overcome with the “six-step” algorithm (Bailey 1990).

The “Six-Step” FFT

If the initial data set is transposed from a N, X N, matrix into a N, x N, matrix,
the strided column FFTs of length N, become contiguous row FFTs. This memory
locality facilitates the use of processor cache systems, greatly increasing memory
response times, and allows independent calculation of the row FFTs by different
processors in parallel systems. A second transpose operation after the row FFTs
have been calculated counteracts the effects of the first transpose operation and
makes the next set of row FFTs contiguous in memory as well. The FFT is finished
with a final transpose operation which brings the data into normal order.

These transpose operations are relatively efficient on distributed memory parallel
systems with fast inter-node communications, and add little time to the overall
FFT. In fact, for applications with very large N, the time required to move the data
from external media to computer memory and vice versa tends to dominate the
FFT time. The “six-step” algorithm has become the “standard” FFT algorithm for
distributed memory systems where the serial nature and large number of short FFTs
exploit parallel computation strengths.

Unfortunately, if the data does not all fit into the core memory of a workstation
or parallel machine, the transposes become extremely slow operations since data
must be read to and written from much slower external media. Fraser (1976) devised
optimized methods for dealing with such data permutations on external media
including the “two-pass” FF'T algorithm.

The “Two-Pass” Out-of-Core FFT

Fraser (1976) and Bailey (1990) both describe how a very large data set may be
Fourier transformed with only two read-write passes through externally stored data
if a scratch area on the external media the same size as the input data set exists.
The method uses the “four-step” algorithm with out-of-core transposes. These
transpose algorithms allow blocked external media access and perform most of the

2«Strided” means that the data is stored in a sequence of non-contiguous memory locations spaced
by a constant amount of memory known as the “stride”.
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transposition work in core memory. While external media access speeds and transfer
rates are orders of magnitude slower than core-memory systems, the “two-pass”
algorithm allows huge arrays to be transformed in manageable times.

2.3 Fourier Transforms of Real Data

2.3.1 Fourier Response to Noise

If our data n; are composed of some constant value ¢; plus random real-valued noise
fluctuations d; with zero mean, the transform terms become

(Cj +d]) e—27rijk:/N =¢; e—27rijk/N + d] e—27rijk/N. (29)

The linear nature of the Fourier transform allows us to treat the DFT of the d;
independently from the constant length steps, ¢;. Since the complex phase factor
for a given j and k is fixed, the direction of each element in the sum is nearly fixed.
However, since the sign of the d; may be either positive or negative, the vector
direction of the j* element may be reversed. Thus, the DFT of the d; creates a kind
of random walk in the complex plane.

The statistical properties of this random walk for DFTs of pure noise have
been well studied (see, e.g. Blackman & Tukey 1959), and result in power spectra
distributed according to an exponential distribution (a x? distribution with 2 degrees
of freedom) with average and standard deviation equal to N (d?). If we normalize
the powers by dividing by N <d§>, the probability for a power P = |Ak|2 in a single

bin to equal or exceed a power P’ by chance is®

Prob(P > Py =e". (2.10)

Similarly, if we sum m properly normalized powers, the probability for the summed
power P, to exceed a power P’ is given by

Prob(P, > P') = e, (2.11)

which is the probability for a x? distribution of 2m degrees of freedom to exceed 2P'.
Such an incoherent (since no phase information is used) summation of powers is

often useful when searching for signals suspected of having power in many harmonics
(see §2.3.2).

3This is different than the probability for an actual signal to produce a power P > P’ in the
presence of noise (see §2.3.3). This difference is important in setting upper limits on the amplitudes
of periodic signals as discussed in Vaughan et al. (1994).
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Proper normalization of the powers is essential for an accurate estimate of a
signal’s statistical significance or lack thereof. We often cannot normalize our power
spectrum by simply dividing by N <d§>, since frequency-dependent noise may be
present throughout our power spectrum — perhaps as a result of instrumental,
atmospheric, or astrophysical processes. Typically, these processes produce noise
which increases in strength towards the low-frequency part of the spectrum and is
correspondingly called red noise.

Techniques to flatten or remove this “coloured” noise component from the power
spectrum are described by Israel & Stella (1996), and usually involve dividing short
portions of the power spectrum by the locally determined average power level, Pjycq,
such that ) )

Pknorm: ‘Ak‘ = ‘Ak‘ = i .
’ N{(d?)  Pocar  Poca

As long as the number of averaged powers is small enough such that the power
spectrum is roughly constant over the range in question, a white noise like power

(2.12)

spectrum is produced with average and standard deviation of approximately one and
an exponential distribution (eqn. 2.10).

Since strong narrow-band signals near some frequency of interest will skew a local
power average upwards (and correspondingly decrease the calculated significance of a
signal detection), it is important to exclude such powers from the calculation of P,eq.
A simple and effective way to accomplish this is by normalizing with a corrected local
median power level instead of the local power average. An exponential distribution
with unity mean and standard deviation has a median of In(2). Therefore, dividing a
section of raw powers by @ times the local median value is theoretically equivalent
to normalizing with the local mean, but has the advantage of being insensitive to
high-power outliers in the spectrum.

More advanced algorithms for the removal of “coloured” noise and power
normalization do exist. A simple example involves fitting polynomial models to
portions of the power spectrum and then dividing by them out. These methods work
well for Fourier frequencies near zero where the assumption of roughly equivalent
power levels for the local powers may be unwarranted.

For the special case where the noise in our data is purely Poissonian (i.e. for
binned photons in an optical or x-ray observation), we have (d?) = (n;). In this
case, our properly normalized power for the k" DFT element is

P AP AP
k,norm — o\ ;
N<dj> Nph

(2.13)

where n,, = N (n;) is the sum of the n; (or the total number of photons for a
photon-counting system), which is also equal to the “DC” frequency value of the FT
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(see §2.2.1). However, the same processes that caused the “coloured” noise discussed
above can significantly alter this situation and require a power normalization based
on local powers (see eqn. 2.12).

2.3.2 Fourier Response to Periodic Signals

One of the more useful properties of the F'T for astronomical purposes is its response
to periodic signals. Since all real periodic signals can be expanded into a series of
sinusoids it is important to understand the F'T response to a simple sine wave.

Sinusoidal Signals

If we now let our n; represent a sampled cosinusoid of amplitude a, phase ¢, and

frequency f, = % (where wavenumber r is an integer and f, an “integral frequency”),

we can write

n; = a cos(2rf,jdt+ ¢) (2.14a)
= a cos(2mjr/N + ¢) (2.14b)

a .. . .. .
— 5 (e27r1]r/N—|—1¢ + e—27r1]r/N—1¢) ) (214C)

From this expression, we see that the k'® element of the DFT is given by

N-1
a —27ij ij i —2mijr /N —i
Ak — 526 2nijk/N (GQWQT/N+¢+e 2mijr /N ¢) (215&)
7=0
a N-1
— 5 Z eZm](kfr)/N—Hd) + 6727r1](k—}—r)/N71¢), (215b)
=0

and represents the summation of two vectors in the complex plane. For k # r, the
first term traces out |k — r| complete “rotations” (pseudo-polygons which start and
end at the origin) in the complex plane (since k — r is an integer), giving a net
contribution of zero to the k" DFT element. The second term traces out k + r
complete rotations and once again contributes nothing to the k™ DFT element (since
k and r are both positive and therefore k + r # 0.

When k£ = r, however, the consecutive terms in the summation add coherently
(i.e. in phase and therefore without rotation), since the rotation caused by the DFT
exponential exactly cancels that from the signal exponential (the Fourier transform
“derotates” the signal). As a result, each element of the sum is a step in the complex
plane of magnitude § in a direction parallel to the one set by the arbitrary initial
phase of the signal, ¢. For a cosinusoidal signal with integral frequency f,, the DFT
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will be uniformly zero, except in the 7! frequency bin, where the response is

A, = Na o, (2.16)
2

The Fourier response is more complicated for sinusoids with non-integral
frequencies (i.e. wavenumber r is a non-negative real number). The k™ DFT element
is still given by eqn. 2.15b, but not all of the signal ends up in a single DFT bin Ay.
When k = [r] (where [r] is the nearest integer to r), the first term in eqn. 2.15b
traces out a fraction (k — r) of a complete rotation in the complex plane, while
the second term traces out k + [r] complete rotations, plus an additional fractional
rotation.

When N is large, these complete and fractional “rotations” can be treated as

circles and arcs respectively. Therefore, the first term of eqn. 2.15b results in a

Na
2

semi-circular arc of length (N modk + [r]) along the arc. The DFT response is

semi-circular arc of length along the arc, while the second term produces a
simply a vector drawn from the origin to the end of the arc (see Fig. 2.1). Since
virtually all astrophysical applications involve > 1, where the first term dominates
the response, we will ignore the second term in the rest of our analysis.
The final response is a chord subtending 27(k — r) radians of a circle of radius
Na__ The equation for the length of a chord is

dn(k—r)"
s . (©
C =2 6 Sin (5) y (217)

where s is the arc length and © is the angle subtended by the chord. The curvature
of the arc away from the signal’s starting phase ¢ results in a phase change of

e in(k=r)  Therefore, the DFT response and power are

o Na/2 . [2w(k—T)

A = o gimhr)g _gin [T 2.1

k e?e G p— s1n[ 5 } (2.18a)
Na .4 _i _.sin[w(k—71)]

_ Na iy —inte—r) )l 2.1
2 © w(k—r) (2.18b)
= A, e ™ M gine [x(k — 1) (2.18¢c)
P, = |A = P, sinc® [n(k — )], (2.18d)

where A, = % e is the DFT response for an integral frequency signal (eqn. 2.16),(])30
sin(x
This result is easily confirmed by a direct integration of eqn. 2.2 where n(u) is equal

to eqn. 2.14c with % — U.
The sinc factor in eqn. 2.18c produces a loss of sensitivity for the standard

is the corresponding Fourier power, and the sinc function is defined as sinc(z) =

FFT to most real-world signals (where r is not an integer). This effect, often
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Figure 2.1 Fourier responses plotted as a series of vector additions in the complex
plane. The outer circles in each plot show the Fourier amplitude of a signal where
all power is recovered by the vector addition (i.e. calculation of the DFT at the cor-
rect signal frequency r and frequency derivative 7 for signals with linear changes in
frequency over time). The end-points of the vector additions are the Fourier am-
plitudes. For plots (a) and (b), a fully recovered signal would start at 0 + 07 and
end at 1+ 0i. (a) and (b) show the effects on Fourier amplitude and phase when a
signal’s intrinsic frequency (r in bins or wavenumber) or frequency derivative (7 in
bins/observation) differs from the computed values. For plot (b), the average Fourier
frequencies in each case were correct, and only the frequency derivatives were in error.
(c) shows the response of PSR J1807-2459 during its discovery observation (Ransom
et al. 2001b) with and without corrections for pulsar acceleration (7) and interpola-
tion in Fourier frequency (7). The vectors were calculated using the method shown
in §2.4.2. The fact that the corrected vector does not quite reach the circle implies
that higher order effects of the orbital motion remain un-corrected (see Fig. 2.6). (d)
shows corrected and uncorrected responses of 10,000 randomly selected photons from
a 2.4 day observation of the Crab pulsar with ROSAT.
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called “scalloping” (e.g. Middleditch et al. 1993), is shown in Fig. 2.2, and causes
a worst-case (when |k — 7| = 3) amplitude reduction of [4;| = 2 |A4,| — a nearly
60% loss of signal power. On average, scalloping results in a ~ 23% loss of signal
power (van der Klis 1989). It is important to remember, though, that this loss in
sensitivity is due to the finite frequency resolution of the FFT algorithm rather than
an intrinsic feature of the data itself. In §2.4.1 we discuss various methods to reduce

or even eliminate this loss of sensitivity.

Non-Sinusoidal Signals

Many real-world periodic signals are not sinusoidal. Fortunately, we can expand all
real-valued pulsations as a series of m sinusoidal components

m
n;, = Zah cos(2mjhr /N + ¢p) (2.19a)
h=1
m
_ Z % (e27rijhr/N+i¢h +e—27rijhr/N—i¢h) (2.19b)
h=1
where h = 1,2,...,m specifies the harmonic number (with ~ = 1 known as the

“fundamental”), and a;, and ¢, represent the amplitude and phase of each component
respectively. Due to the linear nature of the F'T, we can treat the harmonics as
independent sinusoidal signals. Each of these sinusoids produces a Fourier response
equivalent to eqn. 2.18¢, except that A, becomes A; = % elon,

For nearly sinusoidal pulsations only the first few terms of eqn. 2.19a contain
significant amplitudes, a,. This results in a similarly small number of significant
peaks in the corresponding power spectrum of the data. Low duty-cycle pulsations
(i.e. those with a pulse that is short compared to the pulse period), such as most
radio pulsars, on the other hand, have dozens of significant terms in their expansions
and therefore harmonics in their power spectra.

A useful pulsation model, particularly for radio and x-ray pulsars, can be
constructed based on a modified von Mises distribution (MVMD)

er cos(27 frt+¢) __ ek

Iy(k) —e*

f(k,t)=a : (2.20)

where 0 < ¢t < T is the instantaneous time, I is the modified Bessel function of
zeroth order, and the shape parameter, x, determines the width of the function (e.g.
Mardia & Zemroch 1975). In the limit as x — 0, the MVMD becomes a sinusoid,
while as kK — oo, it becomes a Gaussian (see Fig. 2.3). The integral of the MVMD
over a single pulse period is simply a, all of which is pulsed (i.e. the pulsed fraction
is one). The full-width at half-maximum (FWHM) as a fraction of a pulse, is

FWHMyyup = 7~ " arccos {In [cosh(x)]}, (2.21)
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Figure 2.2 The thin solid black lines plot the sinc function amplitude responses of
raw (or integer) FFT bins. The point where these lines cross (at an offset of !/,
and an amplitude of 1 — % ~ 0.637 of the full response) is the worst case response
for an uncorrected FFT (see eqn. 2.18c). The thin dashed line is the response of
an “interbin” as calculated using eqn. 2.31. The thick black line shows the overall
“scalloping” when interbinning is used. Worst case responses with interbinning occur
at offsets of + (1 — Z) ~ 0.215 with amplitudes of ~ 0.926 of the full response.



CHAPTER 2. FOURIER TECHNIQUES FOR LONG TIME SERIES 21

and the maximum value is

2a cosh(k)

e (2.22)

maxmvmMp =
The FT of the MVMD can be computed in a particularly convenient form for
harmonic analysis. According to Abramowitz & Stegun (1972, eqn. 9.6.34), we can
expand the exponential in the MVMD as

o0

ercos(@) =1 (k) + 2 Z I,(k) cos(hx), (2.23)
h=1

where I, is the modified Bessel function of order h. When combined with the rest of
the MVMD definition we have

20 )7 In(k) cos(2mh frt + ho)

flk,t) =a+ To(K) — o "

. (2.24)

This expression is simply a “DC” term (since the integral over a pulse equals a)
plus a series of independent cosinusoidal harmonics. After Fourier transforming (i.e.

substituting into eqn. 2.2 with f.t — ru), we are left with a series of harmonics of
AN 1, (k)
Io(n)fe—”
that as kK — oo and the pulse becomes narrower, the Fourier amplitudes of the low

amplitude and phase h¢ at Fourier frequency hAr. It is important to note
order harmonics are twice that of a sinusoid with the same pulsed fraction (see the
dashed line in Fig. 2.4). This fact, along with the large number of harmonics that
low duty-cycle pulsations generate, can significantly increase search sensitivities to
such pulsations (see Fig. 2.5).

Fig. 2.4 shows the approximate number of significant harmonics (meaning that
a harmonic’s amplitude is greater than one-half the amplitude of the fundamental)
generated by an MVMD pulsation, as well as a histogram of the duty-cycles of
over 600 radio pulsars (the majority of which are from Taylor et al. 1995). Most
radio pulsars have duty-cycles < 5% corresponding to > 10 significant harmonics —
assuming a sufficient data sample rate.

2.3.3 Periodic Signals With Noise

When a periodic signal is present in a noisy time series, a sum of m powers

P,,, containing some amount of signal power P, is no longer described by a x?
distribution with 2m degrees of freedom (see §2.3.1). Groth (1975) calculated the
expectation value and variance of P, as (P,,) = m+ P; and <P731 — <Pm)2> =m+2P;
respectfully. He also derived the exact probability density function for P,, which can
be integrated to give the probability that P, is greater than or equal to some power
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Figure 2.3 Sample pulse profiles from the modified von Mises distribution (MVMD)
as described in §2.3.2. FWHM is the fractional full-width at half-maximum and &
is the MVMD shape parameter. High values of « result in Gaussian profiles, while
as k — 0, the pulse shape becomes more and more sinusoidal. The integral of a full
pulse is equal to one unit, all of which is pulsed (i.e. the pulsed fraction is one).
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Figure 2.4 The thick solid line represents the approximate number of harmonics from
an MVMD signal (see §2.3.2 and Fig. 2.3) that produce Fourier amplitudes greater
than one-half the amplitude of the fundamental. The thin solid line is the m rule-
of-thumb that is often used to estimate the number of significant harmonics a signal
will generate. The thin dashed line plots the ratio of the fundamental amplitude for
an MVMD signal to a sinusoidal amplitude of the same pulsed intensity. The grey

histogram shows the distribution of pulse widths (FWHM) for over 600 radio pulsars.
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Figure 2.5 The thin lines represent sensitivities to MVMD signals (see §2.3.2 and
Fig. 2.3) for the incoherent summing of 1, 2, 4, 8, 16, or 32 harmonics, as compared
to searches made without harmonic summing (§2.3.1). Lower numbers represent
better sensitivity (i.e. fainter signals are detectable). The best possible sensitivity
using incoherent harmonic summing is shown by the thick black line. It should be
noted that incoherent summing produces worse sensitivities than not summing if the
duty cycles of the pulsations are large. This results from the fact that such pulsations
have only a small number of significant harmonics (see Fig. 2.4), so that summing
tends to add only noise rather than signal.
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PI

’ : oo k+m—1 P, ]Pk
Prob((Pm; Ps) > P') = _(P+PS)Z Z T (2.25)

When P; = 0 this equation reduces to Eqn. 2.11.

The fact that the probability density function for a signal plus noise is different
from a x? distribution with 2m degrees of freedom is very important when trying
to determine the sensitivity of a search for pulsations or an upper limit to the
amplitude of a periodic signal present in a time series. Vaughan et al. (1994) describe
a procedure? for correctly determining search sensitivities and upper limits using the
equations of Groth (1975).

2.3.4 Photon Counting Data

Since many of today’s astronomical time series come from photon counting
experiments, it is important to raise some of the issues particular to Fourier analysis
of such data. If we can assume purely Poissonian statistics, a power spectrum of
pure noise is flat, and can be normalized simply by dividing by the total number
of photons in the data (the zeroth or “DC” frequency bin from the DFT — see
§2.3.1). In addition to this difference in power spectrum normalization, the other
points worth noting come from the fact that photon counting data is based on the
measurement of events rather than the instantaneous sampling of a continuous
process.

One important issue that is beyond the scope of this paper is dead-time
correction. Dead-time effects modify a detector’s sensitivity to photons for some
time after the detection of an earlier photon. These effects can cause complicated
non-linear and frequency-dependent systematics during Fourier analysis. We refer
the reader to Zhang et al. (1995) and references therein, for a thorough discussion of
this topic.

Binned vs. Sampled Data

Many high-energy telescopes and detectors produce time series of binned photons
rather than the sampled data produced by radio telescopes. Since binning essentially
averages a periodic signal’s instantaneous rate over the binning time (dt), it
modifies the Fourier response to the signal. Binning removes phase information
from the data and causes the Fourier response to sinusoidal pulsations to become

4Note that Vaughan et al. (1994) use a power normalization that is a factor of two higher than
ours.
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frequency-dependent — resulting in decreased sensitivity at high frequencies (e.g.
Middleditch 1976; Leahy et al. 1983).

The frequency-dependent loss in Fourier amplitude due to binning is sinc(r f,dt)
or sinc(nr/N). The binned data Fourier response to a sinusoid is therefore eqn. 2.18¢
times this factor. This decrease in sensitivity corresponds to a loss in signal power of
about ~ 19.8% at half the Nyquist frequency and ~ 59.5% at the Nyquist frequency
itself.

For Poissonian noise (i.e. from a photon-counting experiment that does
not introduce count-rate dependent systematics), which is independent of the
sampling interval, the Fourier response is flat over all frequencies. This is in
contrast to a sinusoidal signal passing through the same system which suffers the
frequency-dependent attenuation described above(Middleditch 1976). Such behavior
is important when trying to estimate limits or amplitudes for pulsations in a time
series (Vaughan et al. 1994).

Low Count Rate Data

The Fourier analysis of gamma-ray or x-ray observations often places us in a very
unique regime — very long integration times (> 10*s) with very low numbers of
counts (g 10 photons). In addition, due to visibility constraints based on the orbits
of the telescopes, large fractions of the time between the first and last photons may
be devoid of counts.

Fourier analysis of such data can overwhelm present computational resources.
For example, a 10°s observation (about 11.6 days) with photon time-of-arrival
(TOA) resolution of 10™*s would require a 10 Gpt FFT for a full-resolution analysis.
Such FFTs, while possible, are extremely difficult to compute unless very special
and dedicated hardware resources are available. If this data contains only a small
number of photons, however, we can exactly compute the DFT over any frequency
range and to any frequency resolution using a brute-force implementation of the FT.

If we treat each TOA as a sample of amplitude one, an exact DFT amplitude at
arbitrary Fourier frequency r becomes

Niph

A'r — Ze72WiT(tj*t0)/T’ (226)
j=1

where nyp;, is the number of photons, t; is the TOA of the 4% photon, t, is the
time of the start of the observation, and T is the total duration of the observation.
Very quick harmonic-summing searches of an observation are possible using this
technique, with the added benefit that “scalloping” (see §2.3.2) is non-existent.
Since eqn. 2.26 only involves a summation over the number of photons, it can be
computed quickly if n,, is relatively small. Great increases in computation speed can
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be had if we search a regular grid of Fourier frequencies. Trigonometric recurrences
such as

cos(f+0) = cos(f) — [acos(f) + Bsin(6)] (2.27a)
sin(f +6) = sin(f) — [asin(f) — Bcos(0)], (2.27b)

where o = 2sin” (£) and 8 = sin(4), allow extremely efficient calculation of the
complex exponential for each TOA (Press et al. 1992). This technique allows one
to calculate billions of Fourier frequencies from a few hundred photons using only

modest computational resources.

2.4 Improving the DFT Response to Arbitrary
Signals

2.4.1 Fourier Interpolation

The potential for up to a 30% decrease in signal-to-noise (S/N o< v/P) due to
an essentially arbitrary difference between the signal frequency and the integer
frequency of the nearest Fourier bin is clearly a drawback in the use of the DFT
(see §2.3.2). However, if we could calculate the Fourier Transform (FT) at a
higher frequency resolution than the 1/7 spacing that results from the FFT, we
could significantly reduce or eliminate scalloping and effectively flatten the Fourier
response as a function of frequency.

One possibility for increasing the frequency resolution is to simply calculate the
DFT by a brute force summation at frequencies between the integer frequencies. Such
a technique is possible in special situations (see §2.3.4), but for most applications,
the computational costs would be unacceptably high. Another well-known possibility
is to “pad” the end of the time series with a large number of points with values
equivalent to the mean of the data®. The padding adds no power to the data but
it does increase the Fourier resolution since 7' has been artificially increased by
the padding. While this technique is simple and effective for short time series, the
difficulties involved in performing very long FFTs (§2.2.2) makes this technique
difficult when dealing with long time series.

Yet another way to calculate a higher-resolution Fourier response is to use the
complex amplitudes produced by the standard FFT to interpolate responses at non-
integer frequencies — a process known as “fine-binning” or “Fourier interpolation”

5Padding with the data mean is preferable to zero-padding since zero-padding introduces low
frequency power into the Fourier response.
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(e.g. Middleditch et al. 1993). Similar techniques allow the full recovery of a
signal’s theoretical coherent response provided that the signal’s behavior during the
observation is either known or can be guessed.

The purpose of Fourier interpolation is to calculate a complex Fourier amplitude
at an arbitrary frequency f, = 7, where r is any real number, such that the result is
sufficiently close to the exact calculation,

N-1
A, =) nje /N, (2.28)
§=0
We can rewrite this expression as
N-1
A= Ay e ™ Rgine [r(r — k)] (2.29)
k=0

where the A are the complex FFT amplitudes at the integer frequencies [ (see
Appendix A and §2.4.2 for a derivation and discussion of this result).

The sinc function in eqn. 2.29, provides the key to computing an accurate
interpolated amplitude using a relatively small number of operations. Since
sinc[r(r — k)] — 0 as w(r — k) — +oo, the expansion of A, in terms of the Ay is
dominated by the local Fourier amplitudes (i.e. where k ~ r). We can therefore
approximate A, as

[rl+m/2
A, ~ Z Ay e " Rgine [r(r — k)], (2.30)
k=[r]-m/2

where [r] is the nearest integer to r, and m is the number of neighboring FFT bins
used in the interpolation. Note that the interpolation is simply a correlation of
the local FFT spectrum around the desired frequency element with a “template”
response — in this case the theoretical response of a DFT to a sinusoid as described
by eqn. 2.18c.

The upper panel in Fig. 2.6 shows both the raw FFT power spectrum (denoted
by grey dots) and the interpolated power spectrum (the line connecting the dots) for
a radio observation of the short-period binary pulsar PSR J1807—2459. The spectra
cover a narrow frequency range near the pulsar’s rotational frequency and were
calculated using m = 32 and a frequency step size of Ar = % (compared to the raw
FFT frequency step size of Ar = 1). Note that the interpolated spectrum reveals
much more information regarding the shape of the frequency profile — including the
true amplitude and location of the maximum in Fourier power. We will see in §2.5

how this can be used to deduce further information regarding the signal properties.
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Figure 2.6 An 180¢ (single trial) detection from the discovery observation of the
1.7hour binary PSR J1807—2459 in the globular cluster NGC6544 using a Fourier-
domain “acceleration” search. Contour intervals correspond to 30, 60, 90, 120, and
150 times the average local power level. The intrinsic pulsar period and f = 0 (which
corresponds to an un-accelerated FFT of the data) are marked by the solid gray lines.
The dots correspond to the “raw” or un-interpolated powers from the original FFT
of the observation. The gray ellipse is the predicted “path” of the pulsar in the f-— f
plane given the known binary parameters. During the 28.9 minute observation, the
pulsar moved from ~ 11 o’clock to ~ 3 o’clock on the ellipse. The peak’s slight
offset from the ellipse and the presence of “shoulders” indicate that the constant f
assumption of the acceleration search could not fully correct for the orbital motion
during this observation. The top and right-hand panels show cuts through the peak
in the f and f directions respectively. The line in the top panel with gray dots shows
the Fourier interpolated f = 0 power spectrum (calculated as per §2.4.1).
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A computationally less expensive version of Fourier interpolation is “interbinning,”
where we approximate the F'T response at half-integer frequencies using only the
nearest 2 integer frequency bins. By using the Fourier interpolation equation
(eqn. 2.30) with m = 2, ignoring an overall phase shift, and boosting the response
such that the best-case response (at half-integer frequencies) is equivalent to the full
response, we get

(s

Ak—l— >~ (Ak - Ak—|—1)- (231)

N =

4
This particular formulation of interbinning was reported by van der Klis (1989),
and its response is shown in Fig. 2.2. Middleditch et al. (1993) have contributed a
correction to this formula for use when the data are padded at the end.

Interbinning is extremely useful since such a computationally inexpensive
calculation reduces the maximum loss of signal-to-noise from 1 — % or ~ 36% at a
frequency offset of /5 bin to ~ 7.4% at an offset of + (1 — Z) bins. This large but
cheaply-obtained reduction in scalloping can be extremely beneficial when searching
large numbers of FF'T bins and interbins.

It is important to note that interbins as defined above have three different
properties than integer FF'T bins. First, they have different noise properties, which
makes calculation of the significance of interbin powers much more difficult. Second,
each interbin is correlated with the integer bins it was created from, meaning that
interbins are not independent Fourier trials (see §2.2.1 for a discussion of the IFS).
And finally, interbins do not recover the correct phase of a sinusoid at the interbin
frequency. In general, since interbins are most commonly used during searches to
simply identify signals in the power spectrum that would otherwise have been lost
due to scalloping, these weaknesses do not degrade the usefulness of their calculation.
When a signal is identified, a full-scale interpolation of the Fourier amplitudes
around the signal using eqn. 2.30 allows accurate estimates to be made of the signal’s
significance and other properties (see §2.5).

2.4.2 General DFT Response Correction

Fourier interpolation serves as a specific example of a much more general technique
— the ability to completely recover the fully coherent response for virtually any
signal. For Fourier interpolation, we can exactly calculate the response of any
Fourier frequency based purely on the properties of the F'T. To correct the Fourier
transform’s response to a particular signal, we must know not only the properties of
the F'T, but the properties of the signal we are looking for as well. For the cases we
will discuss, this ability comes in one of two forms: matched filtering in the Fourier
domain using only the “local” Fourier amplitudes near the Fourier frequencies of
interest (which we call the “correlation technique”), or the straightening of the
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curved Fourier vector addition in the complex plane (which we will call “vector
bending”).

Correcting for Constant Frequency Derivative

In order to illustrate these two methods, we demonstrate how to correct for a signal
whose response is reduced due to a constant frequency derivative f (or in Fourier
frequency bins, r = sz). The DFT operates, as we noted in §2.3.2, by “derotating”
the vector addition of the data in the complex plane by changing the phases of
each of the vector elements — causing a straight line to form for a sinusoidal signal
with integral frequency. In the presence of a frequency derivative however, the
signal frequency may change by one or more frequency bins over the course of
the observation. The complex phase corrections provided by the DFT will fail to
completely derotate the data, and pulsation power will be “smeared” across several
nearby frequency bins — causing a decrease in the measured DFT response (e.g.
Johnston & Kulkarni 1991). Fig. 2.1 illustrates this effect in the complex plane.

As with a frequency error, an uncorrected frequency derivative causes the vector
addition to form an arc, although in this case quasi-parabolic rather than circular.
The decreased DFT response equals the distance from the origin to the end of the
arc. This distance is significantly shorter than that of a coherently detected signal
which equals the the length along the arc.

Signals with constant or nearly constant f are quite common in pulsar astronomy
— especially when dealing with time series of very long duration. In such long
observations, even the very small spin-downs typical of pulsars can cause a signal
to drift across numerous Fourier bins. The Doppler effects of binary pulsar orbits
cause similar frequency drifting when the observation time is much shorter than the
orbital period.

The “standard” method to correct for a constant frequency derivative is to
“stretch” the original time series to compensate for the known or assumed f . This
process involves re-sampling the data ensemble n; using a transformation similar to

2
t'=t+ —ftQ, (2.32)

fo

where t is the time used when sampling the original data, f is the frequency
derivative, and f, is the initial frequency of the signal. Additional details and
variations on the theme can be found in Middleditch & Kristian (1984); Anderson
et al. (1990); Johnston & Kulkarni (1991) and Wood et al. (1991).

By stretching the data using the appropriate transform and then FFTing the
corrected time series, we can recover the fully coherent response. Such techniques
have been used with significant success in searches of relatively short time-series (e.g.
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Camilo et al. 2000). However, this technique runs into significant difficulties when
trying large numbers of transformations using long time series where computation of
the FFT is non-trivial. Both techniques that we will mention allow full corrections
to be made to a signal without requiring multiple FFTs of the full original data set.

Correlation Technique

The correlation technique is the more powerful of the two methods, and uses
matched filtering in the Fourier domain to “sweep-up” signal spread over a number
of frequency bins into a single bin. In astrophysical applications, we usually have
some sort of “pure” signal (like a harmonic from a millisecond pulsar), whose
frequency changes as a function of time due to some other process (such as orbital
motion or pulsar spin-down). In the Fourier domain, these processes cause the
perfect sinc-like response of a harmonic to be spread over numerous local Fourier
bins — in effect, the sinc response is convolved with a finite impulse response
(FIR) filter (where finite in this case refers to a small portion, say m bins, of the
frequency range analyzed rather than a short period of time). If we can predict the
complex form (and phase) of that FIR filter, we can recover the coherent response
(i.e. the perfect sinc-function) by correlating the appropriate Fourier bins with a
“frequency-reversed” and complex-conjugated template that matches the filter.

In mathematical terms, consider a signal with a normalized Fourier response
of Ax_,,, where k — r, is simply the frequency offset of bin £ from some reference
frequency r,, which goes to zero as |k — r,| approaches some number of bins m /2.
For Fourier interpolation as described in §2.4.1, this response is equal to eqn. 2.18c
without the A, factor (i.e. normalized to an amplitude of one for a coherent
response). The complex-valued Fourier response of such a signal at frequency r, can
be calculated with the sum

[ro]l+m/2
A, Y A AL (2.33)

k=[ro]—m/2

If r, is initially unknown (i.e. we are searching for a signal with the response shape
as defined by the template but at an unknown frequency) we simply compute this
summation at a range of frequencies r.

Calculating eqn. 2.33 over a range of evenly spaced frequencies is equivalent
to correlating the raw FF'T amplitudes with the template and is therefore most
efficiently computed using short FFTs and the convolution theorem. With FFTs of
length M, such that m <K M < %, we can search a very-long FFT of length % for
any signal whose Ay_,, we can compute, using overlap-and-save or overlap-and-add
techniques (see e.g. Press et al. 1992). Such calculations have advantages over
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standard time-domain “stretching” techniques in that that they are memory local
and can be easily parallelized — important properties when dealing with very-long
time-series and modern distributed memory computer architectures.

Moving to our example of a signal with a constant frequency derivative, a single
harmonic of the signal has the form

n(u) = a cos [27r (rou-i- JU ) + gb] (2.34a)
g [e%i(r"”g“)ei"’ + e_z”i(“’“%ﬁ)e_iﬂ ; (2.34b)
where we use the same notation as §2.2.1. Neglecting the second term as in §2.3.2

and Fourier transforming at some “center” or average frequency 7., = r +7/2, we get

N .
4N o
2 Jo

1
Ay = e (FutH2mu) g (2.35)

where ¢, = r. — 7., and the real “center” frequency of the signal is 7. = r, + /2.
This integral can be evaluated in closed form

1eiw(fu2+24ru) u:i —17r i _
/0 du=—e FUS(Z) = S(Y)+i[C (V)= C(Z)]}  (2.36)

where Y, = f Gy Zp = f (g- +7), and C(x) and S(z) are the Fresnel integrals

C(z) = wcos Ty dt, S(z)= wsin ) dt. (2.37)
0 2 0 2

The Fourier transform response then becomes

aN
227

Using the correlation technique, the coherent response can be recovered by

Ay = J%) (52— sy +ilc M) - (2 ) (2.38)

convolving local Fourier amplitudes with the “frequency-reversed” and complex-
conjugated template as defined by eqn. 2.38. This response, at average Fourier
frequency r. and Fourier frequency derivative 7 can therefore be written as

k=[r]+m/2

o= 3 ae— (s @y - st —ilcm-c @) @)

1-m/2

Eqn. 2.39 takes into account the fact that the signal has been “spread” relatively
evenly into the r closest frequency bins to 7., while an additional small amount of
signal has “leaked” into bins further away — much like the non-zero wings of the
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sinc-like response to a constant frequency signal. As a rule of thumb, the correct
Fourier amplitude will be well-approximated if m is chosen such that 7 < m g 2r.

Large scale searches of pulsations with constant frequency derivatives have
been conducted using the correlation technique. A successful example is a search
for pulsars in globular cluster NGC 6544 using data taken with the Parkes radio
telescope (Ransom et al. 2001b). The search was conducted using an FFT of
13865600 points over Fourier 7 values from —100 to 100 with a step-size of Ar = 2
and included the calculation of amplitudes at half-bin frequency intervals. The
search resulted in the detection of the 3.06 ms PSR J1807-2459 in a low-mass binary
with orbital period 1.7h, the second shortest radio pulsar orbital period known. A
detailed view of the pulsar’s fundamental harmonic is shown in Fig. 2.6. The plot
was calculated using the correlation technique with spacings of Ar = 0.0625 and
A7 = 0.25. The generation of such a piece of the f— f plane takes only a fraction of
a second on a rather modest workstation.

Vector Bending

Vector bending is one of the simplest and most straightforward methods to correct
a Fourier response that has been smeared over several local frequency bins. As
we described in §2.2.1, the DFT can be thought of as the vector addition of N
complex numbers. This addition produces a straight line in the complex plane for
a coherently detected sinusoid. For a sinusoid with a non-integral or time-varying
pulsation frequency, the standard DFT addition produces a curved shape (see
Fig. 2.1). Since the amplitude of the Fourier response is the distance between the
origin and the end-point of the vector addition, any curvature in the vector addition
implies non-optimal signal detection.

The precise shape of the response curve in the complex plane depends on the
mismatch of the signal’s (possibly time-dependent) pulsation frequency and the
frequency used in forming the DFT addition (i.e. the closest FFT bin). Regardless
of the shape, though, for short enough segments of the curve, the segments differ
little from straight lines. We can therefore approximate the shape of the curve as a
sum of G linear segments, each of which contains % points from the full-resolution
vector addition. In terms of the *® DFT amplitude, we can write this as

G-1 G-1¢-1
A, =) B, = nje 2mir/N, (2.40)
g=0 9=0 h=0

where j = g% + h. This is equivalent to calculating and then summing GG independent
DFTs (the B,,), each of which suffers virtually no loss in sensitivity when the
curvature over a segment is small.
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Using these vector addition segments or sub-vectors, we can correct for the loss
of sensitivity due to curvature by simply straightening the vector addition. If we
can predict the true pulsation frequency of a signal as a function of time, we can
predict how much curvature will accumulate in each sub-vector and then remove it
by rotating the segment appropriately.

For our example of a signal with constant frequency derivative, the instantaneous
phase (ignoring the intrinsic phase of the signal) is equal to

Dyrye(u) = 27r/r(u) du (2.41a)
= 27r/(r0 + 7u) du (2.41Db)
= 2mrou + miu?, (2.41c)

where r, = f,7" is the initial pulsation frequency of the signal, and r = fT2 is the
frequency derivative. The process of taking a DFT removes an instantaneous phase
equivalent to ®ppr(u) = 27ru from the signal (see eqn. 2.2). So the instantaneous
phase error is equal to

(berror(u) = (Dtrue(u) - (I)DFT(U) (242&)
210 (ro — 1)U + Tiu’. (2.42Db)

Therefore, to correct a particular signal using vector bending, we first calculate the
B, 4, using eqn. 2.40 for a particular Fourier frequency r (such as the frequency of a
known pulsar). Now we attempt to un-bend the full Fourier response by summing

the B,  after correcting for the phase errors ®.,,o(u4) as defined by eqn. 2.42a. The
corrected response is equal to

Q
—

Ay =3 B gei®error(us), (2.43)

I

Il
)

g

A choice of G ~ 10 will essentially eliminate the loss of response for reasonable
frequency offsets and frequency derivatives (i.e. less than a few 10s of Fourier bins).
While impractical for large-scale searches due to the fact that the B, , must be
recomputed every few r, vector bending offers significant computational advantages
in certain situations. In particular, X-ray observations often consist of short (< 1
hour) “on-source” segments separated by hours, days, or even weeks of “off-source”
time (see also §2.3.4). An FFT of the entire time series might be prohibitively
expensive. However, if we can determine an “initial guess” frequency (e.g. by FFTing
one segment of the observation or from an ephemeris), we can quickly calculate the
By 4 at this frequency from the “on-source” intervals alone. We can reconstruct the
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f- f plane around our frequency of interest without ever creating the full “filled-in”
or padded time series, let alone calculating a potentially huge FFT. Such techniques
have allowed us to perform frequency analysis of very-long stretches of data from
ROSAT observations of PSR B0540-59 (Eikenberry et al. 1998). Similarly, Fig. 2.1
shows the use of the method for a 2.4 day observation of the Crab pulsar.

2.5 Signal Property Estimation

Besides correcting for losses of sensitivity, Fourier interpolation and the other
response correcting techniques mentioned in §2.4.2 allow us to determine other useful
properties of a detected signal. Using detailed amplitude and phase information
from a signal’s Fourier harmonics, we can estimate properties such as the statistical
significance of the signal, the location and duration of the signal in the time series
(the “centroid” and “purity” respectively), the precise pulsation frequency, and
estimates of the measurement errors for Fourier power and phase.

The first step when estimating signal properties in the Fourier domain is to
isolate the true peak of the Fourier response in power. This is easily accomplished by
using the matched filtering techniques to generate an oversampled grid of amplitudes
near and around the signal candidate (see Figs. 2.7 and 2.6). Simple optimization
algorithms such as the downhill simplex method can then be used to refine the peak
location (e.g. Press et al. 1992). Once the peak has been located, estimates of the
first and second derivatives of power and phase with respect to Fourier frequency,
obtained using Fourier interpolation, can be used to calculate various useful signal
properties (Middleditch et al. 1993).

2.5.1 Power, Phase and Signal Amplitude

When the peak of the Fourier response has been located as a function of Fourier
frequency and the other search parameters, the measured power is defined as

(2.44)

where P,,.., is the expected noise power and is usually described by one of N <d§>,
Piocat, OF nyp, as discussed in §2.3.1. Groth (1975, see §2.3.3) showed that since the
measured power is a random variable due to the presence of noise, its variance is
2P;igna + 1, where Py, is the power caused by the signal. Since we do not a priori
know the true signal power, a good estimate for the variance of the measured power
is simply 2P,e05 — 1 since (Preas) = Prignar + 1.
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Figure 2.7 The theoretical response for a boxcar-windowed signal with a constant
frequency derivative. Contours plotted are 10%, 30%, 50%, 70%, and 90% of peak
(i.e. fully corrected) power. The top panel shows the familiar sinc response of the
signal along the f = 0 line. The right panel shows a similar cut along the Ar = 0
line (i.e. the calculated average frequency is the true average signal frequency). The
relatively uniform spread of signal power over the local power spectrum is apparent
for all values of frequency derivative.
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Using P,,cqs, as well as the knowledge that a sinusoid of amplitude a in a noisy

time series produces a power with an expectation value of (Peqs) = 4“1,111 2m + 1 (see
§2.3.2), we can estimate the signal amplitude as
2
(@) = 5V Puorm (Pmeas = 1). (2.45)

For binned data containing a signal with Fourier frequency r, the measured power
should be multiplied by 1/sinc?(7r/N) to correct for the loss in sensitivity due to
binning (see §2.3.4). Vaughan et al. (1994) provide detailed instructions on how to
estimate upper limits on pulsation amplitudes as well as estimates of the overall
sensitivity of a search.

The statistical significance of a signal is also determined by P,..s. The
probability that noise caused a particular power to equal or exceed P45 is given by
e Pmeas (eqn. 2.10 with P’ = P,,.45). But for a search over N;pg independent Fourier
powers, the probability that at least one of the noise powers exceeds P,c.s is given
by

Prob(Pagise > Preas) = 1 — (1 — ¢ Freas) V175 (2.46)

Vaughan et al. (1994) show how to use this information to set detection thresholds
that minimize the number of spurious candidate signals and give high confidence
that signals with powers above the thresholds are real.

Using the real and imaginary parts of the peak Fourier response, we can also
calculate the phase of the sinusoidal signal as

Im (4,..)
= arctan | ——= 2.47

¢meas arctan |:R,e (AT,):| ( )
radians. Using similar arguments as for the measured power, the variance of the
measured phase is approximately 1/(2P,cqs — 1) radians.

2.5.2 Signal Location and Duration in Time

Astronomical observations of pulsations effectively consist of a window of on-source
time where pulsations are present, and the rest of the time when they are not.
For most of this paper we have assumed that a signal is present throughout

the observation as evidenced by the limits of integration for eqn. 2.2, which in
time-normalized units go from 0 < u < 1, or equivalently, from 0 < ¢ < T. In effect,
pulsations such as that defined in eqn. 2.14a are multiplied by a square window
function defined as 1 during the observation and 0 at all other times. This window
function is simply a property of the DFT and is due to the finite duration of our
observation.
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It is possible, though, and for various reasons often likely, that a signal we are
observing turns on and off or varies in intensity during an observation. The behavior
of the signal itself effectively defines a new window function, W (u). By measuring
the moments of this window function with respect to time, we can determine
approximately where in our data a signal is located and for how long.

The approximate location of a signal in a time-normalized time series is described
by its centroid, C' = (u) = % which is proportional to the first moment of the
window function with respect to time. More specifically,

N © wW(u)du
C = ffg W(i))du . (2.48)

Middleditch & Cordova (1982) wrote this in terms of the measured Fourier response

& 1 0¢(r,)
C= 5 (2.49)

where ¢(r,) is the phase measured at the peak of the Fourier response (i.e. @meqs)

as

and r is the Fourier frequency (see Appendix B for a derivation). Signals present
throughout an observation have C=1 /2 while those present in only the first or
second halves of the observation have C' = 1/4 or C' = 3/4 respectively.

The second moment of the window function with respect to time is related
to the moment of inertia of a function and can therefore be used to estimate the
root-mean-squared (rms) dispersion of the pulsations in time about the centroid.
Using this information, Middleditch & Cordova (1982) defined a parameter called
the “purity” (and symbolized by «) as

1 3 02P(r,)
“= _\/ T2P(r,) Or? (2:50)

where P(r,) is the measured power at the the peak of the Fourier response (i.e.
Prrcas, see Appendix C for a derivation). The scaling in eqn. 2.50 is chosen such that
the rms dispersion of the signal about the centroid for a window function W (u), is
equivalent to that of a rectangular window function of duration « (in units of the
time series length) centered on the centroid. A signal present throughout the data
would have a = 1, while one present in only half the data (in a continuous section)
would have o = 1/2. Signals present only at the start and end of an observation but
absent in the middle have a > 1. Purity can also help to identify sidelobes caused
by a periodic modulation of a signal as these Fourier amplitudes have o = /3.
Since the location and duration of a signal in an time series affects the Fourier
response, it is important to understand how eqn. 2.18c changes if a signal is present
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during only part of an observation. In Appendix D, we show that when close to the
peak of a signal’s Fourier response,

A, ~ Aye 2O o) gine [Ta(r —ro)] (2.51)
where A, = % el ¢, is the intrinsic phase of the signal, and r, is the true signal
frequency (in FFT bins). This equation demonstrates that for centroids different
from 1/2, the phase shift between consecutive FFT bins differs from the 7 radians
shown in eqn. 2.18c. Similarly, for purity values different from 1, neighboring FFT
bins show more or less correlation with each other (i.e. the central peak of the sinc
function changes its width).

2.5.3 The Pulsation Frequency and Frequency Derivative

The true pulsation frequency of the signal is located at the point where %—1: = 0.
Furthermore, given the response in eqn. 2.51, we can show (Appendix E) that the

uncertainty in this measurement (in Fourier bins) is given by

3
o= 1o/ 6P eas (252)
This uncertainty is considerably smaller than the often-quoted “frequency error” for
the FF'T of one bin width, which is simply the frequency resolution returned by the
FFT algorithm.

If the correlation method is used to isolate a peak in the f- f plane as shown in
Figures 2.7 and 2.6, we can calculate the uncertainty in the measured 7 value by using
similar arguments and methods as for the frequency uncertainty (see Appendix F for
a derivation). The uncertainty in the 7 (in Fourier bins) is approximately

1
gp= Y10 (2.53)
( V Pmeas

2.6 Conclusions

In this paper we have described techniques that allow sophisticated and fully
coherent Fourier analysis of very long time series. Most of these techniques use
the wealth of information provided by the Fourier phases — information discarded
during “standard” analyses based on raw power spectra.

Significant gains in sensitivity and efficiency are possible when using Fourier
phase information during the search for periodic signals (using the Fourier domain
matched filtering techniques described in §2.4.2) and when characterizing signals
that are known to be present in the data (using the parameters described in §2.5).
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The methods of Fourier domain matched filtering allow efficient, memory local,
and inherently parallel analysis of extremely long time series with only modest
computational resources. Billion point out-of-core FFTs followed by fully coherent
matched filtering pulsation searches are possible on “standard” workstations. More
traditional time domain based techniques (such as acceleration searches performed
by stretching or compressing the time series followed by large in-core FFTs) on
similarly sized time series require specialized high-performance computing resources,
assuming they can be performed at all.

As astronomical instruments become more sophisticated and specialized, time
series of ever increasing duration and time resolution will appear. The Fourier
domain techniques described in this paper should prove to be essential tools in their
analysis.
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Chapter 3

A Binary Millisecond Pulsar in
Globular Cluster NGC 6544

Scott M. Ransom, Lincoln J. Greenhill, James R. Herrnstein, Richard N. Manchester,
Fernando Camilo, Stephen S. Eikenberry, & Andrew G. Lyne 2001, The Astrophysical
Journal, 546, 1.25

Abstract

We report the detection of a new 3.06 ms binary pulsar in the globular cluster
NGC6544 using a Fourier-domain “acceleration” search. With an implied companion
mass of ~ 0.01 My and an orbital period of only P, ~ 1.7hours, it displays very
similar orbital properties to many pulsars which are eclipsed by their companion
winds. The orbital period is the second shortest of known binary pulsars after

47 Tuc R. The measured flux density of 1.3 + 0.4mJy at 1332 MHz indicates that
the pulsar is almost certainly the known steep-spectrum point source near the core
of NGC6544.

3.1 Introduction

Globular clusters are rich sources of radio pulsars. Since the discovery of the first
pulsar in a cluster by Lyne et al. (1987), a series of deep searches have accumulated
almost 50 pulsars in globular clusters, with the majority of these being binary
millisecond pulsars (MSPs). See Lyne (1995) and Kulkarni & Anderson (1996) for
reviews.

Fruchter & Goss (1990; 2000, hereafter FG00) used the Very Large Array
(VLA) to detect steep-spectrum radio sources, which are likely pulsars, in numerous
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globular clusters. They discovered a relatively bright point-like source within 5" of
the optical center of cluster NGC6544 (1.2 £ 0.1mJy at 20cm and 6.5 + 0.8 mJy
at 90 cm). Biggs & Lyne (1996) searched NGC6544 at 50 cm as part of a survey of
globular clusters and found no pulsars down to a limiting flux density of ~ 4mJy.

It has been argued that Doppler smearing from orbital motion could explain the
lack of detection of pulsations from the pulsar-like sources found in VLA surveys
(FGO00). The sensitivities of observations whose durations exceed even a few percent
of the orbital period may be drastically reduced for traditional analyses (Johnston &
Kulkarni 1991). Various schemes have been developed to correct, at least partially,
for this loss of sensitivity when the Doppler effect of the orbital motion can be
approximated as a constant frequency derivative (e.g. Middleditch & Kristian 1984;
Anderson et al. 1990; Wood et al. 1991). These “acceleration” searches have met
with significant success, including the discovery of nine new binary MSPs in the
globular cluster 47 Tucanae (Camilo et al. 2000).

We have discovered a binary MSP in NGC6544 using Fourier-domain techniques
to correct for pulsar orbital motion. This pulsar is almost certainly the radio source
reported by FGOO near the center of the cluster. Results from our single observation
indicate that this object shares many of the properties displayed by the burgeoning
class of eclipsing binary MSPs. These systems are characterized by short orbital
periods (P, ~ 1 — 10hours) and very low-mass companions (mgsini < 0.05 Mg)
(Rasio et al. 2000; Nice et al. 2000). D’Amico et al. (2001) independently discovered
this pulsar and report the results of follow-up observations.

3.2 Observations and Data Reduction

We observed NGC6544, a dense core-collapsed globular cluster, on 1998 February 7
with the multibeam data acquisition system on the Parkes radio telescope in
Australia. Signals from each of two orthogonal linear polarizations were measured
and summed from 256 contiguous 0.25 MHz wide channels centered at 1332 MHz.
Each channel was one-bit sampled at 8 kHz and written to magnetic tape. The full
observation comprised 28.9 minutes of data. Staveley-Smith et al. (1996) and Lyne
et al. (2000a) discuss the observing system in detail.

Since no pulsars were known in this cluster before our observation, we searched
a wide range of possible dispersion measures (DMs) for candidate signals. We
dedispersed the data into time series of 13865600 points using 600 trial DMs from

0 to 600 pcecm™3, in increments of 1pcem™3.

This stepsize allowed a worst-case
dispersion smearing over our bandwidth of ~ 0.1 ms. After barycentering the data
using the JPL DE200 ephemeris (Standish 1982), we performed a Fast Fourier

Transform (FFT) on each time series and saved the resultant spectra to disk.
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Traditional time-domain acceleration searches are performed by stretching or
compressing a time series to compensate for a constant frequency derivative and
then Fourier transforming the resulting series. We have developed a Fourier-domain
acceleration search (S. Ransom, S. Eikenberry, & J. Middleditch 2001, in preparation)
to compute the coherent Fourier response over portions of the frequency—frequency
derivative (f—f) plane using only local Fourier amplitudes from an FFT of the whole
dataset. Similar techniques were described in Middleditch et al. (1993).

The method correlates a predicted Fourier response with a subset of the complex
Fourier amplitudes in the initial full-length FFT. We effectively apply a matched
filter to the data which “sweeps up” all of the signal power that the orbital motion
spreads over nearby frequency bins.

Fourier-domain acceleration searches offer several significant advantages over
their time-domain counterparts:

1. Fourier methods do not require stretching or compressing the time series.
Time-domain stretching or compressing is usually performed using linear
interpolation, which changes the statistics of the data. Portions of the data
are effectively two-bin averaged which decreases sensitivity to high frequency
signals.

2. Time-domain techniques require a full-length FFT for each trial acceleration.
For very long integrations (which are common in cluster searches) that do not
fit into the computer’s core memory, FFTs take orders-of-magnitude more time
to compute than usual (e.g. Bailey 1990). The Fourier technique requires only
a single full-length FFT for each observation (or trial DM).

3. Correlations using only localized Fourier amplitudes are fast and memory
efficient. The correlations can always be performed in core memory and are
calculated efficiently using short FFTs and pre-computed response templates.
The memory locality also allows efficient parallelization of Fourier-domain
searches.

4. The Fourier-domain method allows the calculation of only independent f— f
trials. With time-domain techniques, as described by Camilo et al. (2000),
any choice of acceleration stepsize results in either under- or over-sampling
accelerations for the vast majority of frequencies searched. This amounts
to loss of sensitivity or wasted CPU cycles respectively. A small amount of
over-sampling can be incorporated to eliminate “scalloping” in both the f and
f directions (see e.g. van der Klis 1989).

We performed Fourier-domain acceleration searches on each of the long FFTs
looking for signals that drifted by up to 100 Fourier frequency bins during the
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observation. If we define z to be the number of Fourier bins that the pulsar frequency
(fo) drifts over the course of an integration, the corresponding average acceleration
of the pulsar is a = z¢/(T?f,), where T is the total integration time. For this
observation, a frequency drift of 100 Fourier bins corresponds to an acceleration of
500 ms~2 for a 10 Hz signal or 5ms~2 for a 1000 Hz signal. Since most known binary

2 we were sensitive to all but

pulsars show maximal accelerations of only a few ms™
the most exotic binaries or pulsars with spin periods (Pip;,) much less than ~ 2 ms.
Pulse profiles of strong candidates were folded at a series of trial DMs, frequencies,

and frequency derivatives around the acceleration search values in order to maximize

the signal-to-noise.

3.3 Results

We detected a strong pulsar candidate (power/average local power ~ 165
corresponding to a single trial significance of 18 o) at a DM of 134pccm™3. The
average frequency was 326.85895 Hz and the signal had drifted by 8.6 Fourier bins
(a = 2.6 ms™2) during the observation (see Figure 2.6). Search techniques that do
not account for acceleration would have detected the signal at about ~ 34 times the
average local power level, corresponding to an 8 o detection.

Optimization of the candidate by pulse-folding produced a narrow pulsar-like
profile at a localized maximum in DM of 134 pccm ™ indicating that the signal was
almost certainly not due to terrestrial interference. The Taylor & Cordes (1993)
free-electron model gives an estimated distance of 3.3kpc (~ 25% error) for this DM
in the direction of NGC6544, in fair agreement with the published cluster distance
of ~ 2.6kpc obtained by fitting the mean V magnitudes of horizontal branch stars
(Harris 1996).

We estimated a pulsar flux density at 1332 MHz of 1.3 £+ 0.4 mJy by comparing
the integrated pulsed flux and observed noise to the predicted system noise level
given a system sensitivity and total system temperature of Ty, ~ Tys + Tiry. The
multibeam system has a cold-sky Tyys ~ 21K and a sensitivity of 1.36 Jy K.
Haslam et al. (1982) measured a sky temperature at 408 MHz in the direction of
NGC6544 of T, ~ 260 K. Assuming a spectral index of —2.6, which is typical for
this region (Lawson et al. 1987), we obtain Ty, ~ 12K and Tj, ~ 33K at 1332 MHz.
FGO0O0 reported a 20cm flux density of 1.2 +£ 0.1 mJy and a spectral index of —1.1
between 90 cm and 20 cm which corresponds to a flux density of ~ 1.4 £ 0.1 mJy at
1332 MHz. Our measured flux density agrees with that of FG0OO within the errors,
suggesting that the pulsar may be the previously unidentified point source near the
core of NGC6544. Since the DM-based distance estimate for the pulsar matches
published values for NGC6544, cluster membership is very likely.
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TABLE 3.1

Parameters for PSR J1807—2459
Parameter Value
Right Ascension® (J2000) 18" 07™ 20836(2)
Declination® (J2000) —24° 59’ 52"6(4)
Dispersion Measure (pc cm™) 134(2)
Flux Density at 1332 MHz (mJy) 1.3(4)
Pulse FWHM at 1332 MHz (%) 11(3)
Pulsar Period (s) 0.003059447(2)
Epoch (MJD) 50851.9
Orbital Period (days) 0.070(3)
Projected Semi-Major Axis (It-s) 0.0116(8)
Eccentricity® 0.0
Epoch of Periastron (MJD) 50851.887(1)
Mass Function (M) 3.4(5) x 1077
Companion Mass Limit® (Mg) > 0.009

@ A. Fruchter 2000, private communication.
Fruchter & Goss discovered an error in the 20 cm
position reported in FG00. The corrected position
shown above will appear in an erratum.

b Parameter assumed to be exactly zero. See §3.3.

¢ Assuming a pulsar mass of m; = 1.4 M.

NOTE — Numbers in parentheses represent 2 o
uncertainties in the last digit quoted.

The relatively large signal acceleration indicates that the pulsar is in a short
period binary with a low-mass companion. These systems, almost without exception,
have eccentricities very near to zero due to tidal circularization (see e.g. Phinney &
Kulkarni 1994 and Rasio & Heggie 1995).

In order to study the assumption that the pulsar is a member of a low-mass
binary with an eccentricity of zero, we split the observation into 16 equal-length parts
and folded the data in each at the nominal pulsar frequency. We determined phase
offsets for each of the pulse arrival times and performed a Levenberg-Marquardt
least-squares fit of a circular orbit (i.e. sinusoid) to the phase offsets. The results
are tabulated in Table 3.1 and the residuals and error ellipses of the fit are shown in
Figures 3.1 and 3.2 respectively.

We found no other candidates in our search of NGC6544 to a limiting flux density
of ~ 1.1mJy for 1 ms period signals and ~ 0.5 mJy for periods > 10 ms.
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Figure 3.1 Orbital fit for PSR J1807—2459 assuming an eccentricity of zero. The
error-bars plotted are +2 ¢ uncertainties in the pulse arrival times. An eclipse, if
present, should occur near True Anomaly = 90°, which corresponds to superior con-
junction. The apparent lack of an eclipse could be due to the relatively high observing
frequency (1332 MHz). The inset plot shows the observed pulse profile after folding
with the best-fit orbital ephemeris and pulsar frequency. The error-bar indicates +2 o
uncertainties in the profile values.
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Figure 3.2 Error ellipses (from inner to outer of 1 o, 20, and 3 o) for the orbital period

and semi-major axis of PSR J1807—2459. The large covariance is due to the fact that
the observation covered only ~ 30% of the orbital period.
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3.4 Discussion

There are currently eight binary pulsar systems that display similar orbital
characteristics to those of PSR J1807—2459: PSR B1957+420 (Fruchter et al. 1988)
and PSR J2051—0827 (Stappers et al. 1996) in the Galactic disk, PSR J19104+0004
in NGC6760 (Deich et al. 1993), and pulsars 47 Tuc I, J, O, P, and R (Camilo

et al. 2000). Each of these systems displays a pulse period of a few milliseconds, an
orbital period of 1-10hours, and a very low-mass companion (mgsini < 0.05 Mg).
Some of these systems display radio eclipses, particularly at longer wavelengths (i.e.
50-90 cm).

Our current 1332-MHz data show no evidence for an eclipse (see Figure 3.1) at or
near superior conjunction, but we cannot rule out the possibility of eclipses at longer
wavelengths. Pulsars J2051—-0827 and 47 Tuc J show eclipses at radio wavelengths
between 50-90 cm, but are detected at all orbital phases at 20 cm, scintillation
permitting (Stappers et al. 1996; Camilo et al. 2000). PSR J1910+0004 in NGC6760
was detected at all orbital phases at 20 cm, but Deich et al. (1993) could not rule
out short duration eclipses or eclipses at longer wavelengths.

Most formation theories for short-period binary MSPs in globular clusters involve
dynamical interactions with primordial binaries which have been shown to exist in
significant numbers (Hut et al. 1992). Rasio et al. (2000) describe a recent variant
of the standard “spin-up” model (see Phinney & Kulkarni 1994, for a review) using
an exchange interaction between a neutron star (NS) and a hard primordial binary
containing at least one relatively massive main sequence (MS) star (~ 1-3Mg). If
the exchange interaction results in a binary containing the NS and the massive MS
star, the system enters a common-envelope (CE) phase once the MS star evolves
and fills its Roche lobe. At the end of the CE phase, the NS emerges with a very
low-mass companion in a very short period circular orbit. Systems with orbital
periods P, < 8 hours undergo evolution due to gravitational radiation and enter a
second phase of mass transfer that spins the NS up to millisecond periods.

The scenario described by Rasio et al. (2000) is possible only if the exchange
interactions occurred at a time when massive MS stars were still present in the
cluster. The NSs and primordial binaries must also have undergone mass segregation
and ended up near the cluster core before the MS stars evolved. The timescale for
mass segregation is the half-mass relaxation time, which for NGC6544 is ~ 200 Myr
(Harris 1996). This is significantly less than the MS lifetime of a 1-3 Mg, star and
implies that this scenario may have produced PSR J1807—2459.

Alternatives to “spin-up” models exist in which the NS is created either by
accretion induced collapse of a white dwarf (WD) (e.g. Bailyn & Grindlay 1990),
or the coalescence of a pair of massive WDs (Chen & Leonard 1993). Pairs of
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primordial binaries interact to produce hard binaries which contain a massive WD
or WDs that these models require. The NSs that result from these models are born
spinning rapidly (Pspi ~ 2 — 10ms), have relatively weak (10° — 10'° G) magnetic
fields characteristic of MSPs, and may have low-mass companions in very short
period orbits. Interestingly, these systems could be the progenitors of the low-mass
X-ray binaries (LMXBs) rather than their descendants (Chen et al. 1993).

Future observations of PSR J1807—2459 will lead to improved measurements
of rotational and orbital parameters, an estimate of or upper limit to the orbital
eccentricity, and perhaps information about the circumstellar medium if eclipses are
detected. Rasio et al. (2000) predict that many similar systems must exist in the
globular cluster system — some with orbital periods as short as ~ 15min. If recent
successes such as the 20 cm searches of 47 Tucanae (Camilo et al. 2000) are any
indication, this prediction will soon be put to the test. The ever-increasing speed
of computers and improved algorithms for binary pulsar detection (e.g. Ransom
2000) will allow the analysis of extremely long observations (i.e. days or weeks) that
should reveal even the weakest of pulsars in the tightest of binaries.
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Chapter 4

A New Search Technique for Short
Orbital Period Binary Pulsars

Scott M. Ransom, James M. Cordes, & Stephen S. Eikenberry 2001, to be submitted
to The Astrophysical Journal

Abstract

We describe a new and efficient technique to search for short period binary pulsars
in observations longer than the orbital period. The orbital motion of the pulsar
during long observations effectively modulates the phase of the pulsar signal causing
sidebands to appear around the pulsar spin frequency and its harmonics in the
Fourier transform. For the majority of binary radio pulsars or LMXBs, large numbers
of sidebands are present allowing efficient searches using Fourier transforms of short
portions of the original power spectrum. Analysis of the complex amplitudes and
phases of the sidebands can provide enough information to solve for the Keplerian
orbital parameters. This technique is particularly applicable to radio pulsar searches
in globular clusters and searches for coherent X-ray pulsations from LMXBs.

4.1 Introduction

Short orbital-period binary pulsars have proven to be sensitive laboratories that
allow tests of a variety of physical processes including theories of gravitation.
Unfortunately, except for those systems containing the brightest pulsars, they are
notoriously difficult to detect. When the observation time 7T, is greater than a
fraction of the orbital period P,.,, Doppler effects due to the orbital motion of the
pulsar cause drastic reductions in the sensitivities of pulsar searches (Johnston &
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Kulkarni 1991).

Numerous groups (e.g. Middleditch & Kristian 1984; Anderson et al. 1990; Wood
et al. 1991) have developed variations of so called “acceleration” searches in order to
mitigate the loss in sensitivity caused by orbital motion. These searches can almost
completely recover this lost sensitivity in certain situations by taking advantage of
the fact that orbital motion causes an approximately linear drift of the pulsar spin
frequency fspin, when Tops < Porp/10. Recent acceleration searches of globular clusters
have discovered numerous binary systems, some with orbital periods as short as
~ 90 minutes (Camilo et al. 2000; Ransom et al. 2001b; D’Amico et al. 2001).

Acceleration searches have a severe flaw, however. By their very nature they
place an upper limit on 7, for any given orbital period. Since sensitivities improve
as Tolb/f, acceleration searches are limited to discovering only the very brightest
binary pulsars with orbital periods less than a few hours — which are some of the
most interesting scientifically. For a 2ms pulsar in a 1hour orbit with a low mass
white dwarf (WD) companion, the optimal observation time 7T}, for an acceleration
search (using eqn. 22 from Johnston & Kulkarni 1991) is only ~ 300 — 600 seconds.
If this pulsar were located in a globular cluster, where observations of 5 — 10 hours
in duration are possible, acceleration searches would be a factor of \/Tops/Thest ~ 8
times less sensitive than a coherent search of a full observation.

We have developed an efficient search technique for short orbital period binary
pulsars that complements the use of acceleration searches. Since it requires
Tops 2 1.5P, and its sensitivity improves as the ratio 7oy = Tops/ Porp increases, it
allows the search of very interesting portions of orbital parameter space for the first
time. When many orbits are present in an observation its sensitivity approaches
that of a fully coherent search.

4.2 Phase Modulation due to Orbital Motion

During long observations of a binary pulsar where Ty, is longer than P,.;, the orbital
motion causes a modulation of the phase of the pulsar signal. Differences in light
travel time across the projected orbit advance or delay the pulse phase in a periodic
fashion.
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4.2.1 Circular Orbits

If the orbit is circular (where the eccentricity e and the angle of periapsis w are both
zero), the phase delays are sinusoidal. The fundamental harmonic' of the resulting
signal as sampled at a telescope can be described by

nj = n(u) = a cos 277 spint + Gspin + PLorp COS(27T 06U + Porp)] 5 (4.1)

where a and ¢, are the amplitude and phase of the pulsation, ®,, and ¢, are
the amplitude and phase of the modulation due to the orbit, r is a Fourier frequency
(i.e. 7 = fTyps = Tpps/P), and u = % = t};i" is the “normalized” time during the
observation of the j* sample of N such that 0 < u < 1. We can write ®,,; and ¢,

in terms of the five Keplerian orbital parameters (P,;, €, w, the semi-major axis

Zorp = a1 8in(z)/c, and the time of periapsis 7,) as

2mx
cDorb = 27r$orbfspin = me‘b (42)
spin
and .
— T
Porpy = 2T——" +w + =, 4.3
’ Porb 2 ( )

where the units of both are radians.

The Discrete Fourier Transform (DFT) of a simple (non-modulated) cosinusoidal
signal present throughout an observation can be approximated as (see e.g. Ransom
et al. 2001a)

N-1
A = Z nje 2mir/N (4.4a)
§=0
1 .
~ N/ a €08 (27T spint + Gspin) € 27" du (4.4b)
0

1
— g / (e%i(upm—r)u ei¢SPin + e—271’i('!'5pin+7')u e—i¢spin) d'U/ (44C)
0

12

1
% glPspin / e2mi(rspin—")u (4.4d)
0

)sin (7 (7spin — T)]

™ (Tspin - T) ’

T(Tspin—T

(4.4e)

i
- Acoherent €

since the 7y, + r component of the second term in eqn. 4.4c causes the vector
addition to loop around the origin in the complex plane instead of adding coherently

1The following analysis can be applied to any harmonic h of a pulsar’s signal by substituting
hrgpin for rgpin and the appropriate harmonic phase for ¢spin.
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in phase. The result is the traditional “sinc function”-like response of a square-
windowed sinusoid, where A operent = % el?svin represents the coherent Fourier
response at the spin frequency rp;,. Similarly, we can approximate the DFT of our
phase modulated signal from eqn. 4.1 as

1
AT . alN / eQWirspmu—l—iqupm—l—@Mb cos(277 opp U+ Porb) e—27ri'ru du (45&)

1
= Acohe'r‘ent / elcporb Cos(27r7'orbu+¢orb) eQWl(rspinfr)u du (45b)
0

Using the Jacobi-Anger expansion (e.g. Arfken 1985)

o0

eizcos(é’): Z mJ 1m0 Z J )’ (46)

m=—0oQ m=—0oQ

where J,,(2) is an integer order Bessel function of the first kind, we can expand the
integrand in eqn. 4.5b to give

A, = coherent/ Z J orb) im (277 orpu+dorpt+3) 27r1(rspm ru du (4.7&)
m=—00
o ) 1
= Apoherent Z Jm(éorb) elm(¢orb+§)/ e27T1(’rspin+mT'o'rb_7')’u du. (47b)
m=—00 0

Since the integrand in eqn. 4.7b is identical in form to that in eqn. 4.4d, the Fourier
transform of a phase modulated signal is equivalent to the Fourier transform of a
series of cosinusoids at frequencies centered on the pulsar spin frequency 7gpi,, but
separated from r,p;, by mry., Fourier bins. The response is therefore

Sin [T (T spin + MTopp — 7))
T(Tspin + MTopp —T)
(4.8)
When r,,; is an integer (i.e. the observation covers an integer number of complete

AN ) _
Ar = Aconerent E J orb) lm(¢orb+2) em(TSW"_FmT"Tb )

m=—0o0

orbits), the Fourier response shown in eqn. 4.8 becomes particularly simple at Fourier
frequencies 7gpin, + 5Torp, Where s is an integer describing the sideband in question.
In this case, the summation collapses to a single term when m = s, giving

Arspm-i-srwb = Acoherenth(cborb) eis(¢wb+%) (49&)

N . ™ i
= a—J ((Do'rb) els(¢°’b+§)+l¢sm". (49b)

In effect, the phase modulated signal produces sidebands composed of a series
of sidebands split in frequency from 7y, by sr,, Fourier bins, with amplitudes
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proportional to J;(®y), and phases of s (Pory + %) + Pypin radians®. Figure 4.1
shows the Fourier response for a “typical” pulsar-WD system in a circular 50 m orbit
during an 8 hour observation.

While the number of sidebands implied by eqn. 4.8 is infinite, properties of
the Bessel functions — which define the magnitude of the Fourier amplitudes of
the sidebands — give a rather sharp cutoff at ~ 2®,,;, sidebands (or ~ ®,,;, pairs
of sidebands). The maximum value of Js(®,.;) also occurs near s = ®,,4 at a
value of ~ 0.675@0_:,)/ 3, which gives the phase-modulation response its distinctive
“horned” shape when ®,,;, is large (see Fig. 4.1). The average magnitude of the
phase modulation sidebands falls off more quickly as ~ O.611<I>;rlb/ ? (see Fig. 4.2).

For pulsars with narrow pulse shapes and many Fourier harmonics, phase
modulation produces sidebands split by r,., Fourier bins and centered around
each spin harmonic. For harmonic number h, the phase modulation amplitude is
Dory = 27 Zorph fopin. Therefore, there are h times more sidebands than around the

fundamental, but the average amplitudes are smaller by a factor of ~ h~1/2.

4.2.2 Small Amplitude Limit

When ®,,, < 1, a phase modulated signal will have only three significant peaks
in its Fourier response. These peaks are located at 7y, and 7, &= 745 and have
magnitudes proportional to Jo(®prp) ~ 1 — ®2,/4 ~ 1 and Ji1(Porp) ~ T Purp/2
respectively.

Middleditch et al. (1981) performed a detailed analysis of phase modulated
optical pulsations in the small amplitude limit from the 7.7second X-ray pulsar
4U 1626-67 in order to solve for the orbital parameters of the system. The separation
of the sidebands provided a measurement of the ~ 42 minute orbital period and the
magnitudes and phases of the three significant Fourier peaks allowed them to solve

for ®,,, (and therefore z,.,) and ¢, directly.

4.2.3 Elliptical Orbits

Konacki & Maciejewski (1996) derived a Fourier expansion for elliptical orbital
motion with the useful property that the magnitudes of higher order harmonics
(which correspond to the modulation amplitude ®,,;) decrease monotonically. In the
limit of circular orbits the expansion reduces to the single phase-modulating sinusoid
found in eqn. 4.1.

2Note that J ,(z) = (=1)"J,(z), and also that J,,(z) can be negative. If the amplitude deter-
mined by the Bessel function is negative, the measured phase of the Fourier response will differ by
7 radians since the measured amplitude is always positive.
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Figure 4.1 These two figures show the Fourier response of the fundamental spin har-
monic of a phase modulated 2 ms binary pulsar. The properties of the response are
typical for circular orbits with ®,.5 = 272 oy fspin > 1. The response was calculated
for an 8 hour observation of a NS-WD binary with a 50 m orbital period, projected
semi-major axis of 0.1321t-s, orbital inclination of 60°, and a companion mass of
~ 0.2 Mg. The figure on the right shows the central portion of the full response on
the left. The periodic nature of the sidebands with peak-to-peak spacing (in Fourier
bins) of 746 = Typs/ Pors is obvious.
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Figure 4.2 Results of the measurement of the maximum and average values of
|Js(®orp)| where s are all the integers from 0 — [®,.|. The Bessel functions cor-
respond to the magnitude of the s sideband pair of the Fourier response of a phase
modulated sinusoid as a fraction of the unmodulated or fully coherent amplitude (see
§4.2.1). Approximate asymptotic relations for large values of ®,,, are given above
the measured values.
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Each harmonic of the orbital modulation generates sidebands around the spin
harmonic of the form discussed in §4.2.1. The sidebands created by harmonic h of
the orbital expansion are separated from each other by Ar,., Fourier bins. Since
®,rp,, monotonically decreases for each higher harmonic, the number of sidebands
generated by each harmonic decreases while their spacing and average amplitudes
increase. The most important aspect of this superposition of sidebands is the fact
that the overall response contains sidebands spaced by 7, Fourier bins — just as
for the limiting case of circular orbits.

4.3 Pulsars with Deterministic Periodic Phase
Modulation

Figures 4.3 and 4.4 show Piyn, Py, and @, for 52 binary pulsars from the
literature, all with orbital periods less than 10 days. A few conclusions can be
reached immediately. First, millisecond pulsars (MSPs) are the most common binary
pulsar. Second, there is a relatively flat distribution of P,., which cuts off quite
dramatically near P, ~ 0.08d (~ 2h). And third, a large fraction of the systems
are located in globular clusters.

The fact that large numbers of relatively compact binary pulsar systems should
contain MSPs is not surprising in light of the standard “recycling” model for MSP
creation (Verbunt 1993; Phinney & Kulkarni 1994). This model explains not only
the preponderance of pulsars with millisecond spin periods, but also the fact that
many MSPs will have low-mass (~ 0.1 — 0.4 M) companion stars in compact
circular orbits. These recycled systems make up the majority of the pulsars shown
in Figure 4.3 and have typical values of ®,; of 10 to a few times 103 radians.

The cutoff in P,., at approximately two hours may be at least partly due to
selection effects. The rapid orbital motion of these systems prevents their detection
using conventional search techniques — including acceleration searches — for all
but the brightest systems (Johnston & Kulkarni 1991). Since selection effects have
almost certainly been at least partially responsible for the cutoff, it is difficult
to determine how much the lack of known systems is due to a real lack of such
systems in general. It is certain, though, that neutron star (NS) systems with much
shorter orbital periods do exist, as they are observed as ultra-compact LMXBs
such as 4U 1820—303 (P,p ~ 11m), 4U 1850—087 (Pyp ~ 21m), 4U 1627—673
(Pyrp ~ 42m), and 4U 1916—053 (P, ~ 50m) (Chou et al. 2001; Liu et al. 2001).

The large fraction of known systems inhabiting globular clusters can be explained
by three basic facts. First, long observations, due to their targeted nature, allow
fainter systems to be found in clusters (e.g. Anderson 1992). Second, repeated
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Figure 4.3 Orbital versus spin periods for 52 currently known binary pulsars with
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dashed, and solid lines respectively.
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observations of certain clusters have allowed many very weak pulsars to be detected
with the help of amplification from scintillation (Camilo et al. 2000; Possenti et al.
2001). Finally, large numbers of binary pulsars are expected to exist in clusters
due to dynamical interactions within the clusters (e.g. Kulkarni & Anderson 1996;
Davies & Hansen 1998; Rasio et al. 2000).

Recently, Rasio et al. (2000) have conducted extensive population synthesis
studies for binary pulsars in dense globular clusters like 47 Tucanae. Their initial
results imply that exchange interactions among primordial binaries can produce
large numbers of NSs in binary systems. In fact, their results predict that large
populations of binary pulsars with low mass companions (m. ~ 0.05Mg) should
exist in many globular clusters with orbital periods as short as ~ 15m.

The evidence seems to show that a large population of compact binary pulsars
should exist — particularly in globular clusters — which have so far eluded detection.
With long observations, these pulsars should be detectable if search algorithms are
able to identify the distinctive sidebands generated by the systems. The rest of this
paper discusses just such an algorithm.

4.4 Sideband Searches

The fact that power from an orbitally modulated sinusoid is split into many
sidebands allows us to increase the signal-to-noise of the detected response by
incoherently summing the sidebands. In fact, according to one of the addition
theorems of Bessel functions o
Y In(2)?=1, (4.10)
m=—0oQ

theoretically all of the signal power can be recovered in this manner. Practically,
though, a nearly complete recovery of signal power is very difficult to achieve —
especially if ®,,, > 1. Such a summation would require interpolation of the ~ 2.,
significant sidebands at the precise Fourier frequencies of their peaks rypin £ 57ors, 2
computationally daunting task when ®,.4, 74pin, and 7,4 are unknown.

Even if we could recover all of the power using a sum of the sidebands,
the significance of the measurement would be less than the significance of a
non-modulated sinusoid with the same Fourier power. This loss in significance is due
to the fact that noise is co-added along with signal. The exact loss in significance
can easily be calculated since the probability for a sum of m noise powers to exceed
some power Py,,, is the probability for a x? distribution of 2m degrees of freedom to
exceed 2Py, (see e.g. Groth 1975, and references therein).

In the case where only a few sidebands are suspected to be present (i.e. ®,p < 5),
a brute-force search using incoherent sideband summing may be computationally
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feasible and worthwhile. Unfortunately, except for certain binary X-ray pulsars with
long spin periods, the number of astrophysical systems with ®,., < 5 is probably
small compared to those with ®,., > 1 (see §4.3).

4.4.1 Two-Staged Fourier Analysis

For systems with ®,., > 1, the large number of regularly spaced sidebands allows
a very efficient — although somewhat less sensitive — detection scheme. Since the
sitdebands are separated from each other by r,., Fourier bins, they appear as a short
series of pulsations in the power spectrum of the original time series. By stepping
through the full-length power spectrum and taking short Fast Fourier Transforms
(FFTs) of the powers, we incoherently sum any sidebands present and efficiently
detect their periodic nature. As an added benefit, the measured “frequency” of these
“sideband pulsations” gives a direct and accurate measurement of the orbital period.

We define the following notation to represent the two distinct stages of the
Fourier analysis for detecting a phase modulated signal. As defined in eqn. 4.1, the
initial time series n; contains N points. After Fourier transforming the n; (usually
using an FFT of length N), the complex responses at Fourier frequencies r are
represented by A, as defined in eqn. 4.4a. The powers and phases are then simply P,
and ¢, respectively. The short FFTs of the P, used to detect the sideband pulsations
are of length M (where M < N) and generate complex responses A, powers P,
and phases ¢...

In order for a pulsed signal to undergo enough modulation to produce periodic
sidebands, the observation must contain more than one complete orbit (i.e. 75 > 1).
One might initially think that two complete orbits would be necessary to create
a Nyquist sampled series of sidebands in the original power spectrum. However,
since the sideband pulsations are not bandwidth limited, periodic signals with
“wavelengths” less than two Fourier bins (i.e. 7,5 < 2) will still appear in the A!.
Instead of appearing at Fourier frequency r = M/ry, as for signals with r,, > 2
(see §4.4.2), the fundamental harmonic of the response will appear aliased around
the Nyquist frequency (ryy, = M/2) at 7g4ies = M — M /rorp. While 4 > 1 is the
requirement to create detectable periodic sidebands, simulations have shown that
this technique really requires 7,4 > 1.5 to detect most binary systems.

As the number of orbits present in the data increases, so does the spacing between
the sidebands. Since each sideband has a traditional sinc function shape in A (see
§4.2.1), the full-width at half-maximum (FWHM) of the sideband is approximately
one Fourier bin. Therefore, an increase in spacing effectively decreases the duty-cycle
of the sideband pulsations (i.e. ~ 1/74). Signals with small duty-cycles are easier
to detect for two reasons. First, significant higher harmonics begin to appear in P!
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which can be incoherently summed in order to improve the signal-to-noise ratio. A
rule-of-thumb for the number of higher harmonics present in P/ is approximately
one-half the inverse of the duty-cycle (~ r,4/2). Second, as the duty-cycle decreases,
the Fourier amplitudes of each harmonic increase in magnitude up to a maximum of
twice that of a sinusoid with an identical pulsed fraction (see Ransom et al. 2001a,
for a more detailed discussion of pulse duty-cycle effects). This effect makes each
individual harmonic easier to detect as r,,; increases.

4.4.2 Search Considerations

As the number of orbits present in a time series increases, the signal-to-noise ratio
of a detectable pulsar spin harmonic goes approximately as ~ (7o — 1)~* where
0.3 < o < 0.4 (see Figures 4.6 and 4.7). This leads to the motto of those conducting
sideband searches: “The longer the observation the better.” When making very long
observations it is important to keep the on-source time (i.e. the window function)
as continuous and uniform as possible. Significant gaps in the data — especially
periodic or recurring gaps of the kind common in X-ray observations — create
side-lobes around Fourier peaks of constant-frequency pulsations that a sideband
search will detect. It is a good idea before a sideband search to take the power
spectrum of the power spectrum of the known window function in order to identify
spurious orbital periods that a sideband search might uncover.

Since phase modulation sidebands require coherent pulsations (i.e. fopin is
constant in time) in order to form, it may be necessary to correct the time series
(or equivalently the Fourier transform) such that the underlying pulsations are
coherent. As an example, if the telescope’s motion with respect to the solar system
barycenter is not taken into account during long observations, interstellar pulsations
— and therefore any phase modulation sidebands as well — will be “smeared”
across numerous Fourier bins due to Doppler effects. By stretching or compressing
the time series to account for the Earth’s motion before Fourier transforming (or
equivalently, by applying the appropriate Fourier domain matched filter after the
Fourier transform, see Ransom et al. 2001a) the smeared signal can be made coherent
for the purposes of the sideband search.

If the time-dependence of f,p;, is unknown a priori, due to accretion in an
LMXB, the spin-down of a young pulsar, or timing (spin) noise, for example, one
could in principle attempt a series of trial corrections and a sideband search for
each trial. Such a search methodology is similar in computational complexity to
traditional “acceleration” searches.

While §4.4.1 provided basic principles for detecting compact binary pulsars using
the two-staged Fourier analysis, in the rest of this section we provide a more detailed



CHAPTER 4. A NEW BINARY PULSAR SEARCH TECHNIQUE 65

discussion of how a search might be conducted. Figure 4.5 shows two examples
of sideband searches. The left column shows data from an 8 h observation of the
globular cluster 47 Tucanae taken with the Parkes radio telescope at 20 cm on 2000
November 17. The signal is the fundamental harmonic of the 2.1 ms binary pulsar
A7 Tuc J (fopin = 476.05Hz, P, = 2.896h, r,p = 2.762, ®,,, = 120.87 radians,
and m. ~ 0.03Mg) with a signal-to-noise ratio of n = a/oy, ~ 0.0054. The right
column shows data from a simulated 8 h observation identical to the real 47 Tuc
observation described above. The signal is the fundamental harmonic of the same
2ms binary pulsar used in Figure 4.1 (fypi, = 500Hz, P,y = 50m, 7o = 8,
®,., = 413.44radians, and m, = 0.2 M) with a signal-to-noise ratio one half that of
the 47 Tuc J observation (n ~ 0.0027).

Once a long observation has been prepared as discussed above, we Fourier
transform the data and compute the power spectrum F,. We then begin a sideband
search which is composed of two distinct parts: initial detection of a binary pulsar
and the determination of a detected pulsar’s orbital elements.

Initial Detection

To maximize the signal-to-noise of a detection in P/, we want to match the length
of a short FFT M with the width of a pulsar’s sideband response (~ 2744® o) in
P,. Unfortunately, during blind searches an observed pulsar’s orbital parameters are
unknown a priori, suggesting the need to search a range of short FF'T lengths M and
to overlap consecutive FF'T's. We must therefore choose the number and lengths of
the short FFTs, the fraction of each FFT to overlap, and the number of harmonics
to sum in each FFT. These choices are influenced by the length of the observation
and the nature of the systems that we are attempting to find.

Figure 4.4 shows that all currently known binary pulsars with P,., < 10d have
modulation amplitudes of ®,,, < 6500 radians. This is due to the fact that the short
spin periods of MSPs tend to offset the small semi-major axes (x,) of their typical
binary systems. Conversely, binary systems with wider orbits tend to have longer
spin periods. The vast majority of short orbital period systems lie in the range
of &, ~ 20 — 5000 radians. Multiplying this range by twice the minimum r,., of
1.5 gives a rule-of-thumb range of M ~ 60 — 15000 where the high end should be
increased based on expected values of r,.. For 8 — 12h globular cluster searches a
reasonable range of values would be 64 < M < 65536 in powers-of-two increments,
for a total of 11 different values for M.

The choice of the overlap fraction is slightly more subjective. Since the sidebands
can be very weak, even for a relatively bright pulsar, it pays to try and maximize the
signal-to-noise ratio as much as possible. As sideband searches are quite efficient,
we believe it is worth overlapping by 75% if possible. At an absolute minimum,
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Figure 4.5 Two examples of key parts of a phase modulation sideband search. The
left column shows the analysis of an 8 h observation of the globular cluster 47 Tu-
canae taken with the Parkes radio telescope of the binary millisecond pulsar 47TucJ.
The right column shows analysis of simulated data containing a weaker millisecond
pulsar. Plots a and e show portions of the full-length power spectrum centered on the
fundamental spin harmonic of the pulsars. The grey regions are the sections of the
power spectrum that were FFTd in order to create the power spectra shown in plots
b and f. Plots ¢ and g show histograms of the orbital phase as measured using the
raw Fourier amplitudes in the original FFTs. Once the three Keplerian elements for
circular orbits were determined, a Fourier domain orbital template was calculated and
correlated with the raw Fourier amplitudes (plots d and h). This process recovered
all of the power from the pulsar’s fundamental spin harmonic that had initially (plots
a and e) been spread over many Fourier bins. The dotted lines in each plot show the
known values of the independent variable. A detailed description of each plot is given
in §4.4.2.
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one should overlap the short FFTs by 50% in order to avoid excessive loss of
signal-to-noise when a series of sidebands straddles consecutive FFTs.

In Figure 4.5 plots a and e, the grey shaded regions show the sections of the P,
that were Fourier transformed for the sideband search. The short FFTs of length
M = 1024 and M = 8192 were centered on the known pulsar spin frequency and
resulted in the P! displayed in plots b and f respectively. The short FFT lengths
were chosen as the shortest powers-of-two greater than 2r,.,®,.5. For 47 Tuc J (plot
a), the “horned” structure of the phase modulation sidebands described in §4.2.1
is easily recognizable. This shape is not apparent in plot e, and in fact, traditional
searches would detect nothing unusual about this section of the power spectrum.

Normalization of the P! results in the usual exponential distribution with mean
and standard deviation of one for a transform of pure noise. If one first normalizes
the P, as shown in plots a and e (see Ransom et al. 2001a, for several normalization
techniques), the resulting P! can be normalized simply by dividing by M.

Plots b and f of Figure 4.5 show the highly significant detections of the binary
pulsars in P/. For 47 Tuc J, only one harmonic is visible since 7,4 < 2, but the
single-trial significance is approximately ~ 23 0. For the simulated 50 m binary
pulsar, 3 significant harmonics are detected (predicted harmonic locations are
marked with a dotted line in plot f). When summed, the detection has a single-trial
significance of ~ 150.

Orbit Determination

Once a binary pulsar has been detected, examination of the P, and ¢, allow the
estimation of the Keplerian orbital parameters and the pulsar spin period Pp,.
Brute-force matched filtering searches centered on the estimates are then used to
refine the parameters and recover the fully coherent response of the pulsar.

The simplest parameter to determine is P,.;,. In a Discrete Fourier Transform
we denote the Fourier frequency r as the number of integer oscillations in the
transformed time series. In phase modulation the spacing between sidebands is 7,
bins, implying that the most significant peak in P! should occur at Fourier frequency
M /745 Conversely, if we measure the Fourier frequency 7,eqs in P! with the most
power, we can solve for .., using 7,5 = M /Tmeqs- By using Fourier interpolation or
zero-padding to oversample A and P/, we can determine 7,45 to an accuracy of

3
Wa\/ﬁPmeas’

where P,,..s is the normalized power at the peak and « is the signal “purity”

(4.11)

oy =

— a property that is proportional to the root-mean-squared (RMS) dispersion of
the pulsations in time about the centroid — which is equal to one for pulsations



CHAPTER 4. A NEW BINARY PULSAR SEARCH TECHNIQUE 69

present throughout the data (see Middleditch et al. 1993; Ransom et al. 2001a).
Remembering that P,., = T,s/7ors and solving gives

Tobsrmeas 3Tobs
P, orb = . 4.12
’ M TQM~/6Ppeas (4.12)
For aliased signals, the orbital period is
To S M — meas 3To s
vs (M = Pmeas) b (4.13)

Por aliased = .
baliased M TaMA/6Peas

For pulsars with ®,,, > 1 observed such that r,., > 2, it is often possible to measure
P, to a part in 10, corresponding a ~ 1s error for many of the pulsars shown in
Figure 4.4.

Once P, is known it becomes possible to measure the projected semi-major axis
Zorp Y determining the total width of the sidebands in P,. For bright pulsars like
47 Tuc J, the number of Fourier bins between the “horns” (A, ~ 2®,,.47,:4) as shown
in Figure 4.5a can be measured directly and converted into x,,, using

Ay

- 4.14
47rfspinrorb ’ ( )

Torp =
where f,p;, can be estimated as the frequency midway between the phase modulation
“horns”.

For weaker pulsars, where the sideband edges are not obvious (as in Figure 4.5¢),
A, can be estimated using numerous short FFTs. By taking a series of short FFTs
of various lengths around the detection region of P, and measuring the power,

"3 at the frequency corresponding to P,.,, one can map the

“centroid” and “purity
extent of the hidden sidebands and compute an estimate for x,,.

For pulsars in circular orbits, which constitute the majority of the systems in
Figures 4.3 and 4.4, the only remaining orbital parameter is the time of periapsis
passage T,. Defining the time since periapsis passage as Ay, = ¢, — T, and using
eqn. 4.3 we get

B, =T (9~ 7). (4.15)

where ¢, can be measured from the phases of the sidebands in A, using the
following technique.

From eqn. 4.9b we know that the sidebands have phases of ¢, = s (d)orb + %) +
®spin radians. Since some of the measured phases will be “flipped” by 7 radians

3The measured values of “centroid” and “purity” are estimates of a signal’s location and duration
in a time series as determined from the derivatives of the Fourier phase and power at the peak of
the signal’s response (see Middleditch et al. 1993; Ransom et al. 2001a).
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due to the fact that the Bessel function amplitudes will be negative, we can use
our knowledge of 7, and fy;, to calculate the J3(®,.;) directly and determine
which phases need to be “flipped”. After correcting these phases, we can
estimate ¢, simply by subtracting the phases of neighboring sidebands using
Bory = Psy1 — G5 — /2.

For weak pulsars each measurement of ¢,., has a large uncertainty. Fortunately,
we can make ~ 2®,., measurements of ¢,, by using each pair of sidebands and
then determine ¢,,, and its uncertainty statistically. Figure 4.5 plots ¢ and g show
histograms of the measurement of ¢,,., using this technique.

It is important to mention that for weak pulsars it may be difficult to determine
the location of the sidebands in order to measure their phases. The location of the
sideband peaks can be calculated by measuring the phase ¢,,.qs of the fundamental
harmonic discovered in A]. The number of Fourier bins from the first bin used
for the short FFT to the peak of the first sideband in A, is Simply @meqsTors/27-
Subsequent peaks are located at intervals of r,,, Fourier bins.

Once estimates have been made for the Keplerian orbital parameters, a set
of complex sideband templates are computed over the most likely ranges of the
parameter values given uncertainties in each. These templates are then correlated
with a small region of A, around where the initial detection took place. When a
template is used that matches the pulsar sidebands buried in A,, the total power
for that pulsar spin harmonic is recovered (Ransom et al. 2001a). Figure 4.5 plots
d and h show the results of just such a matched filtering operation. The Doppler
effects from the orbital motion have been completely removed from the data and the
resulting Fourier response is that of an isolated pulsar.

For binary pulsars in eccentric orbits, the techniques discussed here could in
principle be applied to each set of sidebands from the orbital Fourier expansion (see
§4.2.3). Such an analysis would be much more complicated than that described here
and would require a high signal-to-noise detection.

4.5 Discussion

We have described a new search technique for binary pulsars that can identify
sidebands created by orbital modulation of a pulsar signal when T,,s > P,.;. These
“sideband searches” allow the detection of short orbital period binary pulsars that
would be completely undetectable using conventional search techniques.

Figures 4.6 and 4.7 show how the sensitivity of sideband searches compares to
that of acceleration searches for a wide range of observation times 7,,,. Acceleration
search sensitivities are near-optimal when Ty < 0.1P,; (Johnston & Kulkarni
1991), but degrade rapidly at longer integration times when the constant frequency
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derivative approximation breaks down. Sideband searches, on the other hand,
require Ty > 1.5P,,, in order to approach the sensitivity of optimal duration
acceleration searches, but for longer Ty, sensitivity improves as ~ (7o — 1)~ where
0.3 < a < 04. For targeted searches of duration ~8—12h (e.g. globular cluster
observations), sideband searches are ~2—10 times more sensitive to compact binary
pulsars (Pyy < 4h) than optimal duration acceleration searches. In general, one
should think of acceleration and sideband searches as complementary to each other
— sideband searches allow the detection of ultra-compact binary pulsars, while
acceleration searches maximize the detectability of isolated and longer-period binary
pulsars.

The fact that sideband searches target a different portion of orbital parameter
space than acceleration searches and yet require significantly less computation time,
provides good reason to include them in future pulsar searches where 7, > 30 m.
In fact, the Parkes Multibeam Pulsar Survey (7,55 ~ 35m, Lyne et al. 2000a;
Manchester et al. 2001) has included a sideband search in an on-going re-analysis of
their survey data at the cost of only a marginal increase in computer time. While
the probability of detecting a binary pulsar with P,,;, < 23m is almost certainly
quite low, the discovery of a single such system would provide a wealth of scientific
opportunity.
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Figure 4.6 The results of simulations showing the detectable signal-to-noise ratios
(SNR) for the fundamental harmonic (i.e. a sinusoid) of a 2ms binary pulsar with a
0.1 M companion and orbital periods of 0.5, 1, and 2h. The detection threshold was
8 0. Optimal detection of the sinusoid is shown as the dotted line labeled “Coherent
Search” which is proportional to To_bsl/ . The minima in the “Acceleration Search”
curves denote optimal observation durations for each orbital period Py (Tpest ~
0.1P,). Sideband searches are more sensitive to binary pulsars than optimal duration

acceleration searches when Typ5 > 2P,.
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Chapter 5

Results and Future Prospects

Unfortunate as it may sound, the vast majority of time spent working towards this
thesis was spent in the design, coding, debugging, and testing of a software package
called PRESTO that implements the various techniques discussed in Chapters 2 and
4. What has resulted, though, is a high-quality suite of pulsar search software that
has been used to discover new pulsars. With a suite of working and debugged code,
searching new or archival data sets becomes an almost trivial undertaking.

5.1 PRESTO

PRESTO is a large suite of pulsar search software developed from scratch in ANSI
C. Written with portability, ease-of-use, and memory efficiency in mind, it can
currently handle data from the Berkeley-Caltech Pulsar Machine (BCPM; located at
the GBT), the Wideband Arecibo Pulsar Processor (WAPP), the Parkes Multibeam
system, or any individual time series composed of single precision floating point
data. This last format is useful for analyzing X-ray, optical, or dedispersed radio
data from any source.

The software is composed of numerous routines designed for the three primary
stages of pulsar search analysis:

1. Data Preparation

(a) rfifind searches the raw data in both the time and frequency domains
for interference or other problems. Each channel is analyzed for short time
intervals throughout the observation. The result is a list of recommended
portions of the data to mask.

(b) prepsubband clips, masks, dedisperses, barycenters, and pads raw data
into numerous time series over a range of trial DMs.

74



CHAPTER 5. RESULTS AND FUTURE PROSPECTS 75

(c) realfft performs either an in-core or out-of-core FFT based on the
length of the time series to be transformed. The input data is not required
to be a power-of-two in length.

(d) zapbirds removes known sources of interference (or strong pulsars) from
a Fourier transform by replacing them with the local average Fourier
amplitudes.

2. Searching

(a) accelsearch performs a Fourier domain acceleration search with Fourier
interpolation and harmonic summing on an FFT. The code is written
such that it uses a minimum of memory (~ 200 MB for a search over 200
independent accelerations no matter what the length of the FFT) and
utilizes the processor cache as much as possible.

(b) search bin performs a phase modulation sideband search on an FFT
including harmonic summing and Fourier interpolation.

3. Candidate Optimization

(a) prepfold folds known pulsars or candidates from accelsearch over a
range of DMs, periods, and period derivatives around the “best-guess”
values and returns the optimized pulse profile. All plots of new and
candidate pulsars in this chapter were generated using prepfold.

(b) bincand attempts to find an orbital solution for a sideband search
candidate uncovered with search_bin. Brute force matched filtering is
used to search the orbital parameters around the “best-guess” values as
discussed in chapter 4.

Many other utilities for displaying, plotting, and working with data and have been
written in C or as Python® scripts. Since the software is coded in a modular form
and is relatively mature, adding new capabilities, such as the ability to handle a new
pulsar back-end, can be accomplished in only a few hours of programming. Similarly,
with a large library of routines that implement the “building-block” functionality of
Fourier-domain searches as discussed in chapter 2 (such as complex correlations and
template generation), new searches or analysis techniques can be coded quickly and
efficiently.

LA free and aesthetically pleasing scripting language available from http://www.python.org
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TABLE 5.1
Parkes Globular Cluster Observations
Veenter BW Tobs Tsamp N DMs

Cluster (MHz) (MHz) Nepan (h)  (us)  (10%) (pc/em®) Yr Notes
47 Tuc 660 32 256 9.6 125 276 24.5 98 RFI
47 Tuc 1390 256 512 10.1 80 455 24.5 00 PM
47 Tuc 1390 256 512 8.0 80 240 24—-25 00

47 Tuc 1390 256 512 2.8 80 128 24—-25 00

Liller 1 1390 256 512 8.0 500 59  520—820 00

NGC 2808 660 32 256 9.2 125 264 0—-600 98 RFI
NGC 6544 1332 64 256 0.5 125 167  0-600 98 PSR
Terzan 5 1332 64 256 83 125 240  235-243 98
Terzan 5 1332 64 256 3.0 125 86.4 230—246 98
Terzan 5 1390 256 512 2.0 250 288 235-245 99
Terzan 5 1390 256 512 83 125 240 232—-244 00 PSR
Terzan 5 1390 256 512 33 125 100 N/A 01 RFI

Table 5.1 Parameters of globular cluster search data taken at the Parkes radio tele-
scope and searched for this work. Under the notes column “RFI” indicates that
extensive radio-frequency interference degraded the quality of the data significantly,
“PSR” means that a new pulsar was discovered, and “PM” indicates that only a
phase modulation search has been conducted so far. The new pulsar in NGC 6544 is
discussed in Chapter 3.
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5.2 Globular Cluster Searches

Using PRESTO, we have searched a number of long observations of globular clusters
taken with the Parkes radio telescope. Table 5.1 shows the basic parameters of the
data we have searched.

5.2.1 Terzan 5

In order to investigate very intriguing radio point sources discovered in VLA
observations of Terzan 5 by Fruchter & Goss (1990); Fruchter & Goss (2000), we
observed the cluster twice in 1998 for ~ 8 and ~ 3 hours and then again (with Nichi
D’Amico and collaborators) for 8 hours in 2000. The data from 2000 were taken
using an improved back-end for the Multibeam system with twice the number of
channels and four times the bandwidth of the system used in 1998. This data was
also analyzed with more sophisticated versions of the Fourier-domain acceleration
and sideband searches.

The sideband search easily detected Terzan 5 A, the 11 ms eclipsing binary pulsar
(P,p ~ 1.8h), in each of the long observations. These detections occurred in spite of
the fact that the pulsar was visible for less than about 1/3 of each observation due
to eclipses and “nulling” (Nice & Thorsett 1992). For new compact binary MSPs
(Pyry < 41), our limiting search sensitivity was > 0.25mJy at 20 cm. The relatively
bright (~ 1.4mJy at 20cm) and steep-spectrum point source “N” as observed by
Fruchter & Goss (2000) should have easily been detected if it really is a compact
binary pulsar (assuming that the pulsar signal is “on” throughout the observation).
Acceleration searches easily detected both Terzan 5 A and Terzan 5 C (Lyne et al.
2000b) in each observation.

Full-length acceleration searches of the 8 h observation from 2000 uncovered a
new 4.71 ms pulsar (see Figure 5.1) and a candidate pulsar at 2.2 ms (see Figure 5.3).
A re-analysis of the 1998 data using the improved search algorithms immediately
revealed the 4.71ms pulsar (Terzan 5 D; Figure 5.2), but could not confirm the
weaker 2.2 ms candidate. A follow-up observation was taken in 2001 in order to
try and confirm the 2.2 ms candidate, but strong interference prevented a sensitive
search of the data.

Terzan 5 D is most likely an isolated pulsar, although during the 1998 observation
the best-fit period derivative is non-zero at a marginally significant level. While it
is possible that this measurement indicates the pulsar is a member of a long-period
binary, the most likely explanation is that it is due to the lower significance detection.
Future measurements using more sensitive systems (i.e. the GBT) will provide a
definitive answer and quite possibly a timing solution. A timing solution would also
allow us to compare the location of the pulsar with the point sources observed by
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Fruchter & Goss (2000).

5.2.2 Liller 1

During the Parkes run in 2000, we also made an 8 h observation of the rich globular
cluster Liller 1. Liller 1 has been predicted to contain a wealth of pulsars (e.g.
Kulkarni & Anderson 1996), yet none have been detected. The most likely reasons
are the high predicted DM (500—1000 pc cm3) and extensive scattering due to
its location near the Galactic plane and close to the Galactic center (¢ = 354°8,

b =—0°2).

This cluster had been observed with the VLA by Fruchter & Goss (2000) who
identified a radio source near its core. More recent observations have identified this
radio source with the bursting LMXB known as the “Rapid Burster” (Fruchter &
Goss 2000; Moore et al. 2000).

Our searches found no convincing pulsations despite the use of ~ 5000 CPU-hours
of computer time. If millisecond pulsations are present in the cluster, the expected
scatter broadening at 20 cm of ~5—20 ms would almost certainly have made them
undetectable. Future searches at higher frequencies (i.e. 5GHz) should allow more
sensitivity to millisecond periods.

5.2.3 47 Tucanae

During the observing run at Parkes in 1998, we took a 9.3 h observation of 47 Tuc
at 660 MHz. Unfortunately, the interference in this band was terrible and we were
unable to make a very sensitive search of the data. Similar problems plagued the
data taken of NGC 2808.

By 2000, Fernando Camilo and collaborators had been making many long
observations of 47 Tuc using the improved 20 cm Multibeam system. As they were
not analyzing the data in sections longer than about 17m (see Camilo et al. 2000),
they offered to provide some long integrations in order to test PRESTO.

Sideband searches of the long observations easily detected the pulsar 47 Tuc J
with its orbital period of ~ 3h. 47 Tuc I, O, R, and W should also be detectable in
sideband searches of 47 Tuc as long as favorable scintillation conditions are present.
The search limit for new ultra-compact binary pulsars was ~ 0.25mJy assuming a
constant flux density throughout the observation.

Fourier-domain acceleration searches of this data easily detected many of the
known pulsars in 47 Tuc and uncovered numerous good candidates that remain
unconfirmed. We currently have 6 more long (> 8 h) observations of 47 Tuc awaiting
analysis.



(=2}
r~

CHAPTER 5. RESULTS AND FUTURE PROSPECTS

€T/l L00Z—bnv—vT

(zH) 80—26550°L + 10p—4

X pasonpay

4

X paonpay

<

(SW) $+¥GL0vLL % — Poliad Na 7K Peonpay eePid
5 0LXZ— 0 2.01%7 - 0Sz S¥Z Oo¥Z Sg¢ 0% O ¢ ¥ 9 Gl | G0
T T T | T O o
| - L7
3 13 ! £ !
“ H ~3
° 1° 5 % ol
,Ja R R BURRA NSRRI s Rl N
N
3 —— 12 G
A AN asbyd
w %) I
: : ; >~ | 80 90 ¥0 TO0 0 -
y-0l 0 4-0L= ~ NP [ B s N N 3
. _ T = A o oL
(zH) ¥,90¢L°ZLC — baid N NN s S
W~ 5
=) \I\/\I/\I/\l{\/\/\l/\/l\‘\/
. —_—— T~
(sw) ¥$S/0¥ 1L v — poued O =TT =L S|
<7 « T~ @)
ot > — N o =~
I TN~ — T @ u
i 3 T — 2
> S B e, 5 5F
c —~—~ =~
- 1 R A et I
o ] Sl
= = e——n3
(s/s) ¢1—220¢'Z — 10P—d 5
~ (@]
_0LxZ— 0 _0lxZ o [
° gL ,x : el ,x oY
b 7 L
- ]
v/N = 2 YZYG6LC = A2QPIS @l140id
v/N = (ppd) ™ v/N = (s) o\egmo 66°G1/L090CH9l = Bay o|40.4d
v/N = © v/N = (s) g 8¢ = sulg a|ijoid
sleyownind Aipuig oL 1L = AB(PIS DIP(Q
o . 80'65¢ = bay p3og
q0LX(61)62— = (,5/95) g o _o1x(671)00 = (,8/5) *hd 9GCCB607C =  Paplo4 bR
. . Kipq . odoy} . _ s|dwps
g 0Lx(ge)zs =(s/s) " d . _0Lx(88)vSeT = (s/s) d GZ10000 = 1
K _ Kinq . _ odoy . _ KAinq d
(F9)L8¥9L6S 1Ly = (sw) "9 (49)8L¥SLOVLL Y = (SW) "' 887¢GLL0GEE'C88LS = g 4o0d3
0S¥'¢+Z = (NQ) 24nspepy uoisiadsiq  $/0¥ZC086C6°C88LS = o yood]
(08°0L~) £Z—2L0'C > (8SION)d  £/8'S = X peonpay WDaqi}npy sexipg  :adoossje|
SJelswbiDd 14 1seg puppTsSW |/ 18}DPIpUD)

UOI}DWIOU| Y2UDag

MDJ" DO00C SIol

s|lJoid 1s3g Jo sas|nd ¢

40l
(s) swiy

,0LXT
Figure 5.1 The discovery observation of pulsar Terzan 5 D taken 2000 December 5.

The pulsar was discovered using a Fourier-domain acceleration search with harmonic

summing as described in Chapter 2, although accelerations were not needed since the

measured f from the single observation is consistent with zero.



% 60:/1 L00Z—bny—v2 %
X psonpa ]
(sW) S¥L09€ 1Ly — Polad Na gt PeRnPeRY —
n g oixe- 0 L 0Ixz o 0Sz Svz Oovz  sgT oL z¢¥ 5
D,r T T T T D,r L e B! o o P v
9 o & = 1 . oy}
~ oM X P < %r +~
+ 9 15 | £ B c L =
R ™ - Lo C =4 N m o
N - oo L i .
Gt g, 2 2 Jul =
IS N E ] s o m
o o eI RN DR RN BR B o[ i~
[ 1% L 2
® U o 2spyd an
T : : _ @ .y g0 90 ¥0 0 O
N ! w2
& ,-01 0 ,-01— @ m , L P A g N m Mﬂe
n% (zH) Sgr1SLTIT — baud = =2 =
— " — 35 — P
C e~ —_
. AN T
€3] (sW) G¥/09¢ 1L ¥ — polied = T = = s w <=
o oot 0 ,-0LxC LT 2 -~ *®
& z , | | RSl G Gy =B -
a —F E c PR T I~ 20O «©
& S of E e = ¥ 2o g
P Mr w —~— O,\ w o
w B 3 —— T =
E >0 N ~—~— o D
N oS E B I i e Q [ - F 1
"DUu \W/W e N 3 m
= (s/s) €1-925L0°¢ ~ 10p—d x5 o F— il r h 8=
0lxZ— 0 01xZ = o i1 BN =
=) ° i g1 oo =)
= I Ve il 4 ____.._ ;
X | T T
Q S Wb ] - : 1 | <
= S oL E o n -
< > o 1 ﬁ_
w0 N o E B . LO
d
H v/N =" 6/°95661 = ASQPIS °lljoid =
S v/N = (pol) @ v/N = (s) o/(1)u %oo G2'9/9209008 =  bay ojyoud N
wn v/N = © v/N = (s) 8¢ = sulg a|yold o
M sleyownind Aipuig e/ = AB(QPIS DIPQ TT.
259zl = by pyoQ <
A d
) ol oia.co.o = (;8/5) " 0%d g, 01X(971)0°0 = (;8/5) ogoha 78GLGy0¥Z =  PapIo4 DIOQ =
= X(EL)P0 L = (S/9) od o _0LX(sn)eieT = s/9) o 5210000 = o) Dm
o mmmv@mmmgmi y o= (sw) "9 (82)GzLL090LLy = (sw) 'Y 691660008/ °06806 = | yood3 ~
€3 SLy¥¥Z = (WQ) einspepy uoisuadsig  000000GZ98L 0GRS = *  'yood3 3
- (oG /™) lL—s%'¢ > (8SION)d +¢8¢ = Nx paonpay wpaqi}N sayJibd :edooss|a]|
M SJ9}aWDIDd 114 }s8g pupyTSW | /'y :9}DpIpuUD) m
) )
. _ _ o p—
O UOIIDWLIOJU| YOUDag MDJ'D | T8FCIS| 9]1J0dd 1seg JO soesind ¢ i

February 6 using a less sensitive system with only 64 MHz of bandwidth.



010_ gli/l 100Z—bny—y2
s =B
(sw) 6¥968/61°C — Pouad X peonpay °SPUd Z & 2
m 0-0L— 0 oL o ON ¢ v 9 £ Z m
,\ o T T T T T 9= . . -
w I oy w . Gl | S0 0 m M %
= g} . 15 * 2 -
IS) . Lo a o = .n
b = “ o o [ g 8
~ © a g W o
W o 1o © o m
5 - : = X
[0} - @ N o S 2
Lg ] " g
® 5[ 13 = o O &
] \,_ t E
- , : @ . . I 53 =
& oixe 0 ,_0LxZ— W 5 G ..M ,.w
W_u (zH) 18Y086¥St — beud 5o M £
T Rl
C - R — o + W —
oOfF—— T~ — ~—_—— > = m L <
&5 (sw) 6v968/61°C — pPolad Ol——"—  — & 3 S =B
wlu o 20 0 50t = o | ° £3 7
) S ! ! S A | = & —~ —_ nrp
2 °F 5 ¢ © =T E S
© N - X > ~
‘N = EE
L e N s
- M - i m e ——— e m E m M m
oL ~NT——_ —  — 7 g
R N g No T/ = g L = 1m
= -| [<b]
o ™
&~ (s/s) ¥1-2£806'9 — 1oP—d 3 = = =
) g9~ 0 oL = o = e
F o ° T T £ e DR~
2 Q0
Q S 523
Z, S ~r | =2 B £
Z & ...m = m
> 2 =
- i ] 5
& 3 ]
3 = (oo o v/N = _5? GO'ZEGRE = ASQPIS 211joid RR= M
nw N \<vﬂ ) ’ v/N u\@ o\ASC%oo 76'2¢95181Z1¢ = By @140ud 5 =Ty
= v/N = (s d 0z = sulg ajoJ = O o
M sleyownind Aipuig oL LL = >mQ.Em,.M6M w. .m m
. EE=N
) o - o ; 80657 = bay 0Y0Q T g7
“ mTom MQR L= = (/%) ed 6012900 = (55/9)  nid 9522660¥Z =  Peplo4 p3oQ )
o 5 X(r2)y0y— = (/) 7 d J‘oi?mvow@ = (s/5) *'d 5210000 = s1dwos) 0SB
. _ . od ‘
& 1¥9¢0S8/61°C (sw) “d Amm 8/15968/61°7 = (sw) g zvG651£056°7881G = “Iyood3 < a0
&~ (071~ ° LyL9ee = (na) S4nspap uoisiadsid  +/0%Z£08606°c881C = “*Myood3 N g g7
) G| —929/°/ > Awwwozva £6/°GC = Nx paonpay wpaqi}N sayJibd :edooss|a]| Yo nnau
M sJsjawpind 114 1seg 0L7PUPD™MZY :8IDPIPUD) & m =
O UOIIDWIOJU| YOUDag . — Wo -
MDJIT L PO00Z G| °[l404d 1seg 40 sasind ¢ Fl rm .20
wn

system (i.e. Py 2 1d).



CHAPTER 5. RESULTS AND FUTURE PROSPECTS 82

5.3 Other Searches

With working code, it is very easy to conduct searches of other long time series.
Many of these “other” searches were made of archival X-ray data from HEASARC?
or new observations (such as 3C 58 and the CasA SNR) taken with the Chandra
X-ray Observatory. A few of these searches are described below.

5.3.1 3C 58

Steve Murray and collaborators (Murray et al. 2001, in preparation) detected
65.68 ms pulsations from the X-ray point-source in supernova remnant (SNR) 3C 58
at ~ 6.70 significance using the High Resolution Camera (HRC) on the Chandra
X-ray Observatory. Working with Murray, Bryan Gaensler and 1 immediately
searched a 20 ks observation of 3C 58 from the Rossi X-ray Timing Explorer (RXTE)
archives in an attempt to confirm the new pulsar. The data had been previously
searched for pulsations by other groups using various search codes (F. Seward,

B. Gaensler, private communication).

We conducted a blind search of ~2—10kev data from the observation using the
Fourier-domain acceleration search with harmonic summing from PRESTO. The only
candidate was a ~ 6.40 detection of a 65.66 ms signal using a sum of eight harmonics
— the same signal found with the Chandra data. Folding and optimizing the
candidate with various energy cuts produced the ~ 110 profile shown in Figure 5.4.

Using the detections from both the Chandra and RXTE observations, we
were able to determine a spin-down rate for the new pulsar (PSR J0205+6449) of
P =1.94 x 10713, Assuming a magnetic dipole model for PSR J0205+6449, we
infer a surface magnetic field of 3.6 x 102 G. The characteristic age for this pulsar is
5400 yr, indicating either that 3C 58 was not the supernova of 1181 CE, or that the
pulsar’s initial spin period was ~ 60 ms.

5.3.2 Supernova Remnants with RXTFE

Encouraged by the success with 3C 58, Gaensler et al. (in preparation) undertook
searches of 9 other plerionic/composite SNRs using archival data from RXTFE in an
attempt to discover new X-ray pulsars. While we have discovered no new pulsars, the
firm upper limits on pulsed fraction (see Table 5.2) may enable us to say something
about X-ray pulsar luminosities and/or beaming.

2 Available at http://heasarc.gsfc.nasa.gov/w3browse/w3blaunch.html
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Figure 5.4 The new pulsar PSR J0205+6449 in the supernova remnant 3C 58 as seen

in a 20ks archival RXTFE observation.
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TABLE 5.2
RXTE SNR Pulsation Search

Supernova Tore  Nphotons Nbins  Niriats  108o(Tsamp) Highest  Pulsed

Remnant (10%s)  (10%)  (10%) (107) (s) Pruorm  Fraction
G18.9-1.1 49 1636 48.5 6.8 -9 22 <1.1%
G20.0—-0.2 32 862 31 4.3 -9 22 < 1.5%
G21.5—-0.9 20 1408 37 5.2 -10 21 < 1.1%
G24.740.6 45 1493 180 25 -11 22 < 1.1%
G27.840.6 15 467 50 7.1 -11 25 < 1.9%
G63.7+1.1 91 2814 192 27 -10 22 < 0.8%
G292.0+1.8 94 2716 63.5 8.9 -9 23 < 0.8%
G326.3—1.8 43 731 32 4.5 -9 20 < 1.6%
~ Cygni 197 5611 405 5.7 10 2% <0.6%
3C 58 20 445 15 2.1 -9 20 ~ 0.6%"

¢ The maximum normalized power due to PSR J0205+6449 was ~ 13.5
b This is the observed RXTE pulsed fraction for PSR J020546449.

Table 5.2 The values for “Highest P,,,,” are the highest individual powers (normal-
ized with Nppotons) found in the FFT. The Nyqs column is the approximate number
of independent Fourier trials that each search covered. All upper limits were calcu-
lated assuming a sinusoidal (i.e. worst case) profile, allowing for drifts of up to 10
Fourier bins during the observation. Frequencies up to 250, 500, or 1000 Hz were
searched for sampling times log, (Tsamp) of -9, -10, and -11 respectively. Upper limits
were calculated according to the method of Vaughan et al. (1994). The pulsed frac-
tion given corresponds to frequencies 100 Hz. Higher frequencies have progressively
worse limits.
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5.4 Future Possibilities

Within the next few months, my collaborators (Vicky Kaspi, Ingrid Stairs, Jason
Hessels) and I will make some of the first pulsar searches with the new GBT and
the upgraded Arecibo telescope. These observations will include numerous 8 h
integrations of globular clusters from the GBT and 1—2h integrations using Arecibo.
A large “Beowulf” cluster of fast workstations at McGill University will provide the
muscle required by the searches.

Beyond radio data, there are many long observations of LMXBs, SNRs, and other
interesting objects that could benefit from a sophisticated analysis for both binary
and isolated pulsars. The application of sideband searches to long observations of
LMXBs is especially intriguing.

With PRESTO debugged and working, lots of CPU-cycles available, and a torrent
of data available or on the way, I am looking forward to many hours spent searching
for new pulsars.



Appendix A

Derivation of Fourier Interpolation

Following the derivation found in Middleditch et al. (1993), we begin with the
definition of the k*® DFT element,
N-1
Ak = Z n; e_QWijk/N, (Al)
=0
which we then rewrite by substituting the inverse DF'T for the n;
N-1

N—-1
1 g g
Ak — § : (N § :Al engl/N) e—27r19k/N (A2a)

7=0

-1 N-
— %Z Z —2mij(k—1)/ (AZb)
=0 =0

The last summation can be computed exactly using the identity

N-1 Na
Z elod — o5 (V- nsin (%) ( 2 ) , (A.3)
=0 Sln (5)
such that when N > 1 we have
N-1 .
—2mij(k—1)/N —in(k—1)(1- %) S [m(k = 1)] A4
ot ¢ sin [ (k — 1)/N] (A.42)
" —in(k—1)SiD [m(k —1)] A 4b
= ¢ 7k —1)/N (A.4b)
~ N e ™¢t=Dginc[r(k —1)]. (A4c)

Substituting this expression into eqn. A.2b and changing the integer frequency k&
into a continuous real-valued frequency r, we arrive at eqn. 2.29

A, —ZA e " Dgine [7(r — 1)]. (A.5)
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Appendix B

Derivation of Centroid

The centroid is a measure of the approximate location of a signal in a time series as
estimated by the first moment of the signal with respect to time (see §2.5.2). We can
think of a sinusoidal signal in our data as being always present but modulated in
intensity by some window function W (u), where v = ¢/T is the normalized time and
T is the length of the observation. A “normal” observation of a pulsar of constant
intensity would therefore have W(u) = 1 when 0 < v < 1 and W (u) = 0 at all other
times (i.e. a square window). Our signal is therefore described by

s(u) = acos (2mr,u + ¢o) W(u), (B.1)

where «a is the amplitude, r, = f,T" is the Fourier frequency, and ¢, is the phase of
the sinusoid at time u = 0.

Since the centroid of a function is proportional to the first moment of the function
with respect to time, we can easily calculate the centroid using the Moment Theorem
of Fourier transforms. Bracewell (1999) does this and defines the centroid as

_ A0
(uy = = 2miA(0)’

(B.2)

where A(0) and A’(0) are the Fourier transform and its first derivative with respect
to r measured at r = 0.

Eqn. B.2 is not directly applicable for our sinusoidal signal since the information
about the window function in eqn. B.1 has been shifted to the frequency of
the sinusoid in accordance with the Modulation Theorem of Fourier transforms.
Accordingly, we can apply the Modulation Theorem to eqn. B.2 which gives us

(W = ~ 50 (B.3)

Finally, we can write A(r) in phasor form as A(r) = a(r)e") where a(r) and
¢(r) represent the Fourier amplitude and phase as functions of the Fourier frequency
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r. The derivative with respect to Fourier frequency can be written

0 , 0 .
Al(r) = —?9(:) eler) 4 a(r)i—q;g)el"’(r). (B.4)
At the frequency of our signal, the amplitude is A(r,) = a(r,)e*"™) and the Fourier

response is at its peak, making 24") = (. Therefore

ar
Al(ry) = A(ro)i%. (B.5)
Substituting eqn. B.5 into eqn. B.3 we arrive at
~ _ 1 8¢(To)

which is equivalent to eqn. 2.49.



Appendix C

Derivation of Purity

The “purity” of a signal (see §2.5.2) is a measure of the rms dispersion of the
pulsations in time with respect to the centroid and is directly proportional to the
variance in time of the window function of the sinusoid from eqn. B.1. The time
variance is defined as

((u = ()?) = Joo (= (w)” W(u) du, )

but can be written as

(w=(w)’) = (")~ (u) (C.2a)

_ A0 [A'(0))"
= 0] T Iz AQOT (C.2b)

using the Moment Theorem for Fourier transforms (see e.g. Bracewell 1999). Since
our signal is sinusoidal (see Appendix B), application of the Modulation Theorem

gives
A"(r,) [A(ry)]
2 o o
u— (u = — C.3a
<( < )) >s(u) 47-‘-214(7-0) 47T2 [A(To)]Q ( )
A"(ro) A2
= ——— —(C". C.3b
42 A(r,) ( )
Using A(r) = a(r)e'*™) and remembering that % = 0, the second derivative of
the Fourier amplitude is
0*¢(r,) 09(ro)\* | Alr,) 0%a(r,)
A (ry) = 1A(r, 22— A, 2 2 °. C.4
(ro) =1A(r,) or? (o) or + a(r,) Or? (C.4)
From Appendix B, we know that % = —27C which makes the first term of
eqn. C.4 equal to zero since % = 0 and the second term equal to —4W2A(To)é2.
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The second derivative of power at the peak response can be written as

?P(r,) 0%, _ 0%a(r,)
oz or? (A%(ro)A(ro)) = QG(TO)Wa

(C.5)

A(ro)  92P(r,)
2(a(ro))?  Or?

making the third term equal to . Substituting into eqn. C.3a and

simplifying gives 1 9%P(r,)
2 — "o
((u—=(u)) >s(U) ~ 8m2P(r,) Or?

(C.6)

If normalize the variance using the value obtained for a signal present throughout
the observation (i.e. a square window where W (u) = 1 from 0 < u < 1 and zero
elsewhere — which we will call a pure signal) where

(= 0= () = 0 = 5 (3) =35 ©)

and then taking the square-root, we are left with

which is equivalent to eqn. 2.50.



Appendix D

Centroid, Purity, and Fourier
Response

In order to consider the effects of centroid and purity on the Fourier response to a
sinusoidal signal as described by eqn. B.1, we initially assume a Fourier response
equal to eqn. 2.18¢ of

A, = Ay e " 0Te)gine [w(r — 1,)] (D.1)

where A, = % el%e, ¢, is the intrinsic phase of the signal, and r, is the true signal
frequency (in FFT bins). This response is correct only for signals with a square
window function (i.e. W(u) = 1 from 0 < u < 1 and zero elsewhere).

From eqn. D.1 we see that a change in Fourier frequency of a single Fourier bin
causes a change in the measured Fourier phase of m radians. This phase change is also
visible from the centroid equation for a pure signal with C = %, where d¢(r) = —7
for every dr = 1. Rewriting the centroid equation and integrating, we see that the
Fourier phase near the peak response goes as

o(r) = —21rC +c. (D.2)

When r = r,, ¢ = ¢,, allowing us to solve for the constant of integration,
c = ¢, + 2nr,C. Substituting into eqn. D.2, we see that the phase of the Fourier
response is equal to

B(ro) = ¢o — 20C(r —1,). (D.3)

Therefore, for signals that have centroids different from %, the phase change across a
single Fourier bin is different from the usual 7 radians.

The purity, as described in §2.5 and Appendix C, is the effective duration of
a square window which reproduces the measured rms dispersion of the signal in
time about the centroid. Since the Fourier response to a square window goes as
sinc(w fT), where fT = r, we can see that replacing the window of length T with
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one of effective duration o' causes the Fourier response to go as sinc(ra f1). This
fact is also approximately true for more complicated window functions as long as
|r —r,| < 1. The Fourier response to a windowed sinusoid is therefore

A, ~ A, e MCr=0) gine [Ta(r —ro)] - (D.4)

Numerical simulations show that this approximation is valid for purity values
a < 1.5.



Appendix E

Derivation of Frequency
Uncertainty

For a given Fourier frequency offset A, = r — r,, where r, is the Fourier frequency
of the signal, the magnitude of the Fourier response and the power go as (see
Appendix D)
|A(r)] = |A,|sinc (mad,) (E.1a)
P(r) = Peas sinc® (rad,) (E.1Db)
where « is the signal purity. We can expand the sinc function in order to approximate
the expression for the power near the peak of the response as

sin(ma A, 2
2
~ P |1— @ . (E.2b)

Taking the derivative of power with respect to r and solving for A, we obtain
A, = —La—P (E.3)
21202 Pyeas OT
As expected, when the Fourier frequency equals the true frequency of the pulsations
(i.e. A, = 0), the Fourier response peaks and 61;—&” =0.
In order to estimate the uncertainty in A,, we apply standard propagation of

errors to arrive at 3

21202 Ppes

where we have replaced ag—ff) with P'(r) to simplify the notation. The derivative of

Op!(r), (E4)

Oy

the power at the true frequency can be approximated using finite differences as
P(ro+A,)—P(r,—4,)
2A, ’

P'(r) = (E.5)
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The uncertainty in P’'(r) can also be approximated using finite differences and error
propagation. Since P(r, + A,) and P(r, — A,) are highly correlated when A, < 1,
their uncertainties are also correlated giving

1
O-P,(T) = QA (UP T0+A7') + UP(T'Q AT)) (E.6a)
UP(TO+AT)
= A E.6b
x (E.6b)

Now, we turn to the question of the uncertainty in P(r, + A,), closely following
Middleditch (1976). The amplitude of the Fourier response at the true signal
frequency can be written as

N-—1
V Pmeas = Z Yj COS(QS]') (E7)
Jj=0

where y; = \/% are the points in our time series as defined in eqn. 2.1, but
scaled using the appropriate P, such that the measured power, P,,c.s, is properly
normalized (see §2.3.1). Similarly, the ¢; represent the pulsation phases at times
U= %, but rotated by the measured Fourier phase, ¢,,¢qs, such that the result of the
vector addition lies along the real axis in the complex plane (i.e. the final complex
phase is zero). In effect, this transform isolates components of the data that are
parallel to the final Fourier response.

At a small frequency offset A, from the true frequency, we can expand the power

in a similar fashion as
N—1
VP(ro+ Ap) = Z yjcos (¢ + 5¢j) ; (E.8)
§=0

where 04, are the “phase errors” introduced by the frequency offset. The phase
errors add curvature to the vector addition and are defined as

j 1 1
6¢j = 27TA»,« (N — 5) = 27TA7- (U — 5) y (Eg)
where u is the normalized time, u = % = % The % term in eqn. E.9 removes the

accumulated phase error over the course of the observation (i.e. fol 2nAyudu = TA,)
and makes the vector summation of eqn. E.7 finish on the real axis. Expanding the
cosine in eqn. E.8 gives

VP(r,+ Ay) Z y; cos(¢;) cos (5¢] Z y; sin(¢,) sin ((5¢ ) (E.10)

j=0 7=0
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Considering the uncertainties in the separate terms of eqn. E.10, since the cosine
term is an even function of dy,, it is symmetric about 7,, and therefore does not
contribute to the uncertainty in the P’(r) measurement as defined by eqn. E.5. For
the sine term, given that the cos(¢;) “derotates” the signal onto the real axis by
definition, we see that

N-1
> y;sin(e;) =0. (E.11)
=0

Furthermore, since the ¢; and d,4, are uncorrelated, the average value of this term
will be zero,

N-1
<Z y; sin(¢,) sin ((5¢j)> =0, (E.12)
=0
and has no systematic effect on P(r, + A,). However, we can calculate the
fluctuations introduced by this term

<<Ni y; sin (¢;) sin (5¢j))2> = <(§ y; sin (¢j))2> (sin? (65,)).  (E.13)

=0

where the cross-terms average to zero since ¢; and dy, are uncorrelated. Due to the
normalization of the y;, the sum component averages to % The ¢4, component has
an average of

1
(sin? (5,,)) = / sin? (5,,) du (E.14a)

0
1

~ / 0, du (E.14b)
01 .

~ /47T2Az (uz—u—l—z) du (E.14c)
0
2A2

~ ”SA’". (E.14d)

Therefore eqn. E.13 is equal to ”26A %, and the variance of \/P(r, + A,) will be

7T2A%

2 = /P A E.1
0\/ P(ro+Ay) (TO + ’I“) 6 ( 5)

To get the standard deviation, we take the square root of this expression, but then
squaring to get the uncertainty in P(r, + A,) doubles the uncertainty to give

Pmeas
OP(ro+a,) = 2TA 5 (E.16)
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where we have used the approximation P(r, + A;) >~ Ppcqs. Then, substituting into

equation E.6b, we find
Pmeas

Op!(r)y = 2T 6 (E17)
And finally, substituting this expression into eqn. E.4, we have
3 Pmeas
o, = 9m2a2 D (27?(1 5 ) (E.18a)
3
e — (E.18b)

TN/ 6P, e0s '



Appendix F

Derivation of f Uncertainty

If a peak in the f—f plane has been isolated using techniques similar to those shown
in §2.4.2, we can calculate the error in the measurement of the true Fourier frequency
derivative r, = foT2 in a manner similar to that for the frequency uncertainty as
described in Appendix E. Signals with non-zero frequency derivatives have Fourier
peaks which are located off the 7 = 0 line in the f— f plane, but the shapes of those
peaks are independent of 7 and in fact depend only on the window function of
the signal (see Appendix D). The shape of the response in power as a function of
A; =71 — 7, at the “correct” Fourier frequency r = r, is described by eqn. 2.38, and

A .
2 2
when ¢, is defined as

, To To + Af Ay
r — T¢— = 0 - | — o = ——. F.2
¢ =T.— T (r + 2) (r + 5 ) 5 (F.2)

can be written as

s Ag 2
A(re,7) = Ay 7™ a 4 [ —

A , (F.1)

This definition of ¢, keeps the magnitude of the Fourier response symmetric about
¢» no matter what the value of A;. The power as a function of A; is therefore

2 2

2 AV AV
P )= P,— — — F.
(o) = Py s( 2) +c( 2) (.3)
If we expand the Fresnel integrals about 0 as
2
C(x)’zx—;r—ox5..., andS(a:):%x3..., (F.4)
and then substitute, the power becomes
m2A2

P(ry,7) ~ P, [1— ~ ). F.5
(i) 2 2, (1- 727 (F.5)
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Taking the derivative of P(r,,7) with respect to 7 and solving for A, gives
90 OP(r,,7)

A =— —. F.6
2P, Or (F-6)
From propagation of errors,
90
Oy = —ﬂ_ZPOO'pI(TOJ:), (F?)

where P'(r,,7) = w. Similarly, after using a finite difference estimate of the
power derivative following Appendix E, we find

OP(ro,As
OP! (roi) = #, (F.8)
where P(r,, A;) represents the power as measured at 7 = 7, + A;.
Closely following Appendix E, we represent \/P(7,, A;) as a sum of the parallel

components of the properly normalized time series points, y;, as

P(r,, A Z yjcos (¢ + (5¢J) (F.9)
The d4, are the “phase errors” introduced when A; # 0, and are defined as
9 1
5¢j=7TA,: U —’U/—f—é 3 (FlO)

where the u term comes from keeping the response symmetric about r, (i.e.

q = —%) and the l removes the accumulated phase error over the course of the

observation (i.e. fo 7TA (u? —u) du = —%)

eqn. F.9 finish on the real axis.

and makes the vector summation of

Expanding the cosine term of eqn. F.9 gives

VP(re, A Zyj cos (¢;) cos 5¢ Zyj sin (¢;) sin ((5¢) (F.11)

The first term shortens both P(r,, A;) and P(r,, —A;) by the same amount and
does not affect the derivative of power. For the sine term, since ¢; and 4y, are

uncorrelated, the average value is zero (see Appendix E), but its fluctuations are
important. To calculate the fluctuations, we square the terms and get

<(§%‘Sin (6;) sin (5,,) >2> <(Zyj sin @) ><sm (65)).  (F.12)
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2
Due to the normalization of the y;, <(Z;V:—01 y; sin (qu)) > averages to % as before,

and we can directly calculate <sin2 (5¢j)> as

<Z_ sin” (5¢j)> = /0 sin (dg,) du (F.13a)

1

N 2

~ /0 5, du (F.13D)
2A2 ! 2 1 ?

= 7mA; i u —u—i-é du (F.13c)
T2 A2

= r. F.13d
180 (F.13d)

7T2Az

The fluctuations from the sine term are therefore —", and since squaring eqn. F.9
doubles the errors, the standard deviation of P(r,, A;) is

27TA,: 7TA7:
OP(ro,ns) = V P(T0, Ar) 360 ~ v/ Preas Nt (F.14)

Substituting into equations F.8 and then F.7 as in Appendix E gives us the

uncertainty in the frequency derivative

3v/10

Oy = . F.15
™ V Pmeas ( )
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