Molecular Gas and Dust in ULIRGs: SMA View

Submillimeter Array (SMA)

ALMA

Sept. 21-24, 2009, Charlottesville
"Assembly, Gas Content and Star Formation History of Galaxies"

Kazushi Sakamoto
(ASIAA)
Recent work on Molecular Gas and Dust in ULIRGs made with the Submillimeter Array (SMA)

U/LIRG: $L_{bol} > 10^{12}, 10^{11} \, L_\odot$, in mid/far-IR, mergers, S.B./AGN

Case study on Arp 220 (=nearest ULIRG)
- Sakamoto et al. (2008, 2009)
- Matsushita et al. (2009)
- Aalto et al. (2009) → Aalto's talk (CARMA Poster by Ashley Zauderer)

SMA Survey of U/LIRGs
- Wilson et al. (2008)
- Iono et al. (2009)

give you idea what ALMA will do
Arp 220: Nearest ULIRG (75 Mpc), Merger

In the central kpc:
two nuclei + multi-disk system

West nucleus

Arp 220
J,H,K/HST

1" = 360 pc

HST/NICMOS. (Scoville et al. 1998)

Nuclear Disks = Major L source

based on OVRO CO(2-1), 0.5" res.
(Sakamoto et al. 1999)
Arp 220: SMA 860 μm obs.

Rotating disks & warm gas, confirmed

(Sakamoto et al. '08)
Arp 220: L_{bol} of West Nucleus

Arp 220 W:

deconvolved size

Gaussian FWHM $\sim 0.15''$

uniform disk diameter $\sim 0.22''$

i.e., $d \sim 50$-80 pc

deconvolved (peak) T_b

$T_b = 90$-$160 \text{ K} \leq T_{dust}$

(\leq is due to τ_{dust})

Luminosity

$L_{bol} \approx \sigma T_d^4 \times \pi d^2$

$\geq (2$-$3) \times 10^{11} L_\odot$

Luminosity surface density

$\Sigma (L_{bol}) \geq 10^{7.6} L_\odot \text{ pc}^{-2}$

(Sakamoto et al. '08)
Arp 220: M_{dyn} of West Nucleus

From CO(3-2) PV diagram

Dynamical mass

$$M_{\text{dyn}} (r \lessapprox 40\text{pc}) \sim 6 \times 10^8 M_\odot$$

(W's disk is nearly edge-on)

Luminosity-to-Mass ratio

$$L/M \approx 4 \times 10^2 \frac{L_\odot}{M_\odot}$$

(for $r \lessapprox 40\text{pc}$)

c.p.

Young, < 10 Myr, starburst can have

$$L/M \sim 1 \times 10^3 \frac{L_\odot}{M_\odot} \text{ (Starburst99).}$$

AGN can have up to

$$\frac{L_{\text{Edd}}}{M_{\text{bh}}} \sim 4 \times 10^4 \frac{L_\odot}{M_\odot}$$

Thus, both can explain the min L/M.

(Sakamoto et al. '08)
Arp 220: New Constraints on the Power Source

- Central 80 pc of Arp 220 W has
 \[L_{\text{bol}} \approx 2 \times 10^{11} \, L_{\odot}, \]
 \[\Sigma_{\text{bol}} \approx 10^{7.6} \, L_{\odot} \, \text{pc}^{-2}, \]
 \[M_{\text{dyn}} \approx 6 \times 10^8 \, M_{\odot}, \]
 and
 \[L/M \approx 4 \times 10^2 \, L_{\odot}/M_{\odot} \]
 \(-\) Robust estimates based on Stefan-Boltzmann and Newton's laws.

- The power sources consistent with these constraints are
 100s of $10^9 L_{\odot}$ super clusters or an equivalent starburst,
 and
 an energetically-dominant AGN(s).
 \((\text{Sakamoto et al. '08})\)

- Higher-res., higher-freq. obs. \(\Rightarrow\) tighter constraints.

High-resolution sub-mm obs.
\(\Rightarrow\) \(L_{\text{bol}}\) distribution, \(L/M\)
of deeply buried nuclei of ULIRGs
Arp 220: Comparison of I_{dust} and Σ_{SNR}

If starburst-powered,

$$I_{\text{dust \ emission}} \propto \Sigma_{\text{SNR}}^{0.75-1.25},$$

for Schmidt law’s $n=1-2$

under a few simple assumptions (S08).

Arp 220E : PA~45° elongation in both Σ_{SNR} and I_{dust}.

Arp 220W : different distributions

(Sakamoto et al. '08)
Arp 220 : 435 μm (690 GHz)

Matsushita et al. (2009)

1" resolution

sub-mm SED for individual components of Arp 220

→ τ_{860}: W, E ~1; outer disk ≪1; W > E.

not enough resolution for L_{bol}

(Matsushita et al. '09)
Compact HCO$^+$, extended CO(3-2).
Excitation condition limits extent of HCO$^+$.

(Sakamoto, Aalto, Wilner et al. 2009)
Arp 220 : P-Cyg profiles toward nuclei

Blueshifted Absorption + Redshifted Emission = P Cyg profile

(Sakamoto, Aalto, Wilner et al. 2009)
Arp 220: Nuclear Winds

- **Wind from each nucleus**
 \[V_{\text{rad}} \approx 100 \text{ km/s}, \ (\text{up to} \ 500 \text{ km/s}) \]
 outflowing inner region + rotation-dominated outer region

- **Energetically plausible**
 \[SNR \approx 3/\text{yr} \ (W), 1/\text{yr} \ (E) \] (Lonsdale et al. 2006)
 \[L_{\text{mech}} = 3 \times 10^{50} \text{ J/Myr} \rightarrow \Delta V = 500 \text{ km/s} \text{ for } 1 \times 10^8 M_\odot, \text{ at } 10\% \text{ eff.} \]
 \[P_{\text{rad}} \text{ on dust may be another driver} \rightarrow \text{Thompson's talk in this session} \]

- **Outflow rate \(\approx 100 M_\odot/\text{yr} \) (w/ assumptions)**

(Sakamoto, Aalto, Wilner et al. 2009)
Arp 220: High-res. sub-mm obs.

High-resolution sub-mm obs. ➞ radial gas motion in ULIRG nuclei

Sub-mm:
- high T_b, dust, low T_{ex}, molecule ➞ line absorption
- high-J HCO+, localized around the nucleus ➞ traces kinematics near the center

High-res.:
- less contamination from non-absorbing gas.

Possible with ALMA toward many ULIRGs ➞ quenching of starburst through outflows ➞ removal of quasar shroud
SMA Survey of U/LIRGs
Wilson et al. (2008), Iono et al. (2009), ...

\[D_L < 200 \text{ Mpc} \]
\[\log L_{\text{FIR}} > 11.4 \]
\[\text{dec.} > -20^\circ \]

Observed 14 (out of 39).

\[\text{CO}(3-2), (2-1), \text{HCO}^+ (4-3), \text{and continuum} \]
\[\sim 1 \text{kpc (1") resolution} \]

red circle = F.o.V

(Wilson et al. 2008)
Survey: CO(3-2) and L_{FIR}

From this linear correlation one can hope that CO(3-2) is closely related to the IR-generating activities, and is a good line to study them.

(Lono et al. 2009)

(Chung et al. 2009)
Survey: CO(3-2) in U/LIRGs

CO(3-2) res. ≈ 1 kpc

CO(3-2) is detected as ∼1 kpc peaks.
∼50% of total is in these peaks.
M(H₂) ∼ 10⁹ M☉

(Wilson et al. 2008)
Survey: Two Tightest Correlations

(a) \[\log \Sigma_{H_2}^{(peak)} [M_\odot pc^{-2}] \]

\[\log L_{\text{FIR}} [L_\odot] \]

\[L_{\text{FIR}} \text{ v.s. } \Sigma_{H_2}^{(peak)} \]

prob. of false correlation 0.0014

(b) \[T_{\text{dust}} [K] \]

\[T_{\text{dust}} \text{ v.s. } \Sigma_{H_2}^{(peak)} \]

prob. of false correlation 0.0016

Gas concentration to the center (∼kpc) ⇒ More Luminosity

⇒ Warmer ISM

(Wilson et al. 2008)
Survey: Different from prev. studies

Gas concentration to the center (∼kpc) ⇒ More Luminosity

w/o increasing efficiency (=L_{IR}/M_{gas})

More in Wilson et al. (2008), Iono et al. (2009), ...

(Wilson et al. 2008)
Summary
Mol. Gas and Dust in ULIRGs: SMA

Case study with new tricks (possible w/ high-res, high-freq.)
- sub-mm continuum image, SED \rightarrow distribution of L_{bol}, Σ_{bol}, $L_{\text{bol}}/M_{\text{dyn}}$.
- Gas outflows through absorption
 (may quench starburst and/or remove quasar shroud)
- Chemistry (e.g., line-survey, anomalous chemistry and/or excitation around AGNs)
- ...

Survey
- CO(3-2), sub-mm cont. Statistical analysis of M_{gas}, Σ_{gas}, T_{gas}, n_{gas}, M_{dust}, T_{dust}, L_{FIR}, Σ_{FIR}, etc. for star-formation law etc.
- Comparison with high-z galaxies

We can do both and more with ALMA