Molecular gas dynamics in luminous infrared galaxies observed with the SMA

Chris Wilson, McMaster University

1. What are luminous infrared galaxies?
2. The SMA Legacy Project
3. Comparison to high redshift sources
The SMA U/LIRG Legacy Survey

- Chris Wilson, Brad Warren, Adam Atkinson, Jen Golding (McMaster)
- Glen Petitpas, Melanie Krips, T. J. Cox (CfA), Daisuke Iono (NAOJ), Alison Peck (ALMA)
- Andrew Baker (Rutgers), Lee Armus (IPAC), Paul Ho, Satoki Matsushita (ASIAA), Mike Juvela (U. Helsinki), Chris Mihos (Case Western), Ylva Pihlstrom (New Mexico), Min Yun (UMass)
All galaxies with $L_{\text{FIR}} > 5 \times 10^{11} \, L_\odot$ are interacting or close pairs \citep{Sanders1987}.

\textit{ULIRGS are galaxy mergers}

\textit{Figure from Galliano 2004}

\textit{Scoville et al. 2000}
• 70-80% predominantly starbursts
• 20-30% predominantly AGN

Genzel et al. 1998
Gas Morphology and Dynamics in Luminous Infrared Galaxies: Sample Selection

- Representative sample of 14 luminous (log(L_{FIR}) > 11) and ultraluminous (log(L_{FIR}) > 12) infrared galaxies
- $D_L < 200$ Mpc (resolution 1″ ~ 1 kpc)
- log(L_{FIR}) > 11.4
- All with previous interferometric observations in the CO J=1-0 line
The Nearby Luminous Infrared Galaxy Sample

<table>
<thead>
<tr>
<th>Name</th>
<th>Image</th>
<th>Name</th>
<th>Image</th>
<th>Name</th>
<th>Image</th>
<th>Name</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>I17208−0014</td>
<td></td>
<td>Mrk231</td>
<td></td>
<td>Mrk273</td>
<td></td>
<td>I10565+2448</td>
<td></td>
</tr>
<tr>
<td>12.41</td>
<td></td>
<td>12.31</td>
<td></td>
<td>12.08</td>
<td></td>
<td>11.93</td>
<td></td>
</tr>
<tr>
<td>UGC5101</td>
<td></td>
<td>Arp299</td>
<td></td>
<td>Arp55</td>
<td></td>
<td>Arp193</td>
<td></td>
</tr>
<tr>
<td>11.87</td>
<td></td>
<td>11.74</td>
<td></td>
<td>11.60</td>
<td></td>
<td>11.59</td>
<td></td>
</tr>
<tr>
<td>NGC6240</td>
<td></td>
<td>W114</td>
<td></td>
<td>NGC5331</td>
<td></td>
<td>NGC2623</td>
<td></td>
</tr>
<tr>
<td>11.54</td>
<td></td>
<td>11.50</td>
<td></td>
<td>11.49</td>
<td></td>
<td>11.48</td>
<td></td>
</tr>
<tr>
<td>NGC5257/8</td>
<td></td>
<td>NGC1614</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.43</td>
<td></td>
<td>11.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Centrally compact CO 3-2 emission

(HST images of Arp55 and I10565+2448 from Evans, Vavilkin, et al., 2008, in prep.)
Extremely high central gas surface densities

- Peak gas surface densities range from 10^3 to 10^4 M_\odot/pc2 inside 0.5-1.2 kpc2 area
 - 6×10^{22} - 6×10^{23} H_2/cm2
 - $A_V=70$-700 mag

- Average volume density at peak range from 1 to 15 M_\odot/pc3
 - $n_H = 20$ - 300 cm$^{-3}$
 - Estimated as (gas surface density) / (beam radius)

- Average volume density is comparable to a GMC, but volume is 10^3-10^6 times larger
 - 1 kpc versus 10-100 pc
Star formation rates and efficiencies

- \(\frac{L_{\text{IR}}}{M(H_2)} \) ranges from 30 to 600 \(\frac{L_\odot}{M_\odot} \)
 - Total LIR divided by total SMA \(M(H_2) \) ...
- \(\log(L_{\text{IR}}) = 11.43 - 12.41 \) implies star formation rates of 50 - 450 \(M_\odot/\text{yr} \)
 - Kennicutt 1998, ARAA
 - Caution: some \(L_{\text{IR}} \) could be from AGN
- gas depletion times of \(1 \times 10^7 \) to \(2 \times 10^8 \) \(\text{yr} \)
 - Note naïve calculation, does not include possibility of gas recycling

- Very high star formation rates and efficiencies compared to normal galaxies or GMCs
ULIRGs are best local analogs to dusty galaxies at high redshift

- Cosmologically significant population of very luminous dusty galaxies discovered at submm wavelengths
- For z > 0.5, 5 mJy at 850 µm implies L > 8x10^{12} L_\odot

Ivison et al. 2000
Tacconi et al. 2006
Slope (0.92+/-0.03) is similar to HCN (Gao & Solomon 2004) and significantly steeper than CO(1-0) (Yao et al. 2003)
Gas surface densities in M_\odot/pc^2:
- 1400 ± 350 U/LIRGs
- 2290 ± 890 SMGs
- 4280 ± 600 quasars

Surface density correlates with far-infrared luminosity
- $L'_{\text{CO}(3-2)}$ to $M(H_2)$ using $M(H_2) = 0.8L'_{\text{CO}(3-2)}$
- assumes CO3-2/1-0=1
- Note surface densities are not corrected for inclination
What will ALMA be able to do? Two examples ...

- CO J=3-2
- 30 pc (0.06” at 100 Mpc)
- 4 hr, 5 km/s resolution gives 2 K rms
- Probe structure of molecular ISM on GMC scales

- Astrochemistry (HCN, HCO+ 4-3, etc.)
- 200 pc (0.2” at 200 Mpc)
- 4 hr, 20 km/s resolution gives 0.1 K rms
- Probe astrochemistry in starburst regions
Conclusions

- $L'_{\text{CO}(3-2)}$ and L_{FIR} correlated over 5 orders of magnitude
 - CO(3-2) traces dusty star formation activity
 - Star formation efficiency constant to within a factor of two in many galaxies

- ALMA:
 - Higher resolution studies of physics and chemistry of ISM in starbursts
 - Statistically complete samples to 200 Mpc or beyond

- Future work with SMA data:
 - Spatially and velocity resolved physical conditions in gas
 - Comparison with merger simulation
High-redshift comparison sample

- Select high-redshift objects with high resolution observations in CO(3-2) line
 - 12 submillimeter galaxies (SMGs) from $z=2.2-3.1$ (one at $z=1.3$)
 - 9 quasars from $z=2.3-2.8$ (one at $z=6.4$)
 - 2 Lyman Break Galaxies (LBGs) at $z=2.7-3.1$

- References for CO data:
 - LBGs: Baker et al. 2004, Coppin et al. 2007