next up previous contents index external
Next: Confusing Sources Up: A Hitch-Hiker's Guide to VLA Observing Strategies Previous: Visibility averaging time

Total Integration Time

       

Once you have determined the IF bandwidth tex2html_wrap_inline2313 from the field of view criteria, the next step in the continuum decision tree is to estimate the total on-source integration time tex2html_wrap_inline2261 required for given sensitivity on your final image. Here you will use the expression for the r.m.s. noise tex2html_wrap_inline2271 on an image made with an N-antenna array:

(3)  displaymath2600

where n is the number of independent IFs contributed to the image per antenna (n=2 for images of Stokes I from two orthogonal polarization states at one sky frequency, or for images of tex2html_wrap_inline2563 at one sky frequency), tex2html_wrap_inline2261 is in seconds, and tex2html_wrap_inline2313 is in MHz. In the numerator, tex2html_wrap_inline2569 for natural weighting and is >1 for other weightings (the value depending on the gridding and on the baseline distribution--see Lecture 8 for VLA-specific details). tex2html_wrap_inline2573 is the single-interferometer sensitivity per second per MHz of IF bandwidth.

The sensitivity goal will be determined by (a) the significance level you need for a detection to achieve your astronomical goals, and (b) whether the interesting emission is extended (see Angular resolution: how much is enough?). If you are doing polarimetry, calculate the sensitivity from the expected polarized intensity, not total intensity.

You have now reached a critical decision. You have an estimate of the total on-source integration time tex2html_wrap_inline2261 needed for the project as you would initially prefer to do it. Adding some overhead for calibration (typically 10% to 20%, but see Calibration Strategy for details), you now have an idea of how much observing time you would need.

If this first estimate of the total observing time is much longer than the time that the source is above the elevation limits of the telescope each day, then consider carefully whether your choices of frequency and baseline range were optimal. You may wish to re-enter the decision tree with different starting parameters before taking the proposal further.

If your tex2html_wrap_inline2261 is about as long as the source is visible each day, then your project may be well suited to making a full-synthesis image. You could then adjust the observations to fit into a single pass of the source across the sky.

If your tex2html_wrap_inline2261 is much less than the time that the source is visible each day, your observing strategy will be determined by the need for dynamic range (i.e. for good u-v coverage) and by whether you can merge observations of several such sources into one program. If you need high dynamic range, or you want to image an extended structure with tex2html_wrap_inline2261 less than needed for a full synthesis, you should still sample the u-v plane as uniformly as possible. This can usually be done satisfactorily by distributing the observing over several short (e.g., tex2html_wrap_inline2591 -minute) scans spaced equally through the available hour-angle range. Note however that the dynamic range achieved in a given observation also depends on atmospheric and ionospheric conditions, on the elevation angle range, and on your calibration strategy as well as on the u-v coverage.

Two-dimensional arrays with many antennas may have good enough instantaneous u-v coverage to make a ``snapshot" mode attractive for observations of strong, compact sources when the total integration time required is small. ``Snapshot Mode'' discusses the advantages and disadvantages of snapshot mode at the VLA.


next up previous contents index external
Next: Confusing Sources Up: A Hitch-Hiker's Guide to VLA Observing Strategies Previous: Visibility averaging time

abridle@nrao.edu
Thu Jul 11 16:26:53 EDT 1996